26,893 research outputs found

    Comparison of different fractal dimension measuring algorithms for RE-TM M-O films

    Get PDF
    Noise in magneto-optical recording devices is discussed. In general, it appears that either the divider technique or amplitude spectrum technique may be used interchangeably to measure the fractal dimension (D) in the domain wall structure of ideal images. However, some caveats must be observed for best results. The divider technique is attractive for its simplicity and relatively modest computation requirements. However, it is sensitive to noise, in that noise pixels that touch the domain boundary are interpreted as being part of the boundary, skewing the measurement. Also, it is not useful in measuring nucleation-dominated films or domains that have significant amounts of structure within the interior of the domain wall. The amplitude spectrum method is more complex, and less intuitive than the divider method, and somewhat more expensive to implement computationally. However, since the camera noise tends to be white, the noise can be avoided in the measurement of D by avoiding that portion of the curve that is flat (due to the white noise) when the least squares line is fit to the plot. Also, many image processing software packages include a Fast Fourier Transformation (FFT) facility, while the user will most likely have to write his own edge extraction routine for the divider method. The amplitude spectrum method is a true two dimensional technique that probes the interior of the domain wall, and in fact, can measure arbitrary clusters of domains. It can also be used to measure grey-level images, further reducing processing steps needed to threshold the image

    A model for evolution and extinction

    Full text link
    We present a model for evolution and extinction in large ecosystems. The model incorporates the effects of interactions between species and the influences of abiotic environmental factors. We study the properties of the model by approximate analytic solution and also by numerical simulation, and use it to make predictions about the distribution of extinctions and species lifetimes that we would expect to see in real ecosystems. It should be possible to test these predictions against the fossil record. The model indicates that a possible mechanism for mass extinction is the coincidence of a large coevolutionary avalanche in the ecosystem with a severe environmental disturbance.Comment: Postscript (compressed etc. using uufiles), 16 pages, with 15 embedded figure

    Counting (3+1) - Avoiding permutations

    Get PDF
    A poset is {\it (\3+\1)-free} if it contains no induced subposet isomorphic to the disjoint union of a 3-element chain and a 1-element chain. These posets are of interest because of their connection with interval orders and their appearance in the (\3+\1)-free Conjecture of Stanley and Stembridge. The dimension 2 posets PP are exactly the ones which have an associated permutation π\pi where i≺ji\prec j in PP if and only if i<ji<j as integers and ii comes before jj in the one-line notation of π\pi. So we say that a permutation π\pi is {\it (\3+\1)-free} or {\it (\3+\1)-avoiding} if its poset is (\3+\1)-free. This is equivalent to π\pi avoiding the permutations 2341 and 4123 in the language of pattern avoidance. We give a complete structural characterization of such permutations. This permits us to find their generating function.Comment: 17 page

    Comparison of Gaussian process modeling software

    Get PDF
    Gaussian process fitting, or kriging, is often used to create a model from a set of data. Many available software packages do this, but we show that very different results can be obtained from different packages even when using the same data and model. We describe the parameterization, features, and optimization used by eight different fitting packages that run on four different platforms. We then compare these eight packages using various data functions and data sets, revealing that there are stark differences between the packages. In addition to comparing the prediction accuracy, the predictive variance--which is important for evaluating precision of predictions and is often used in stopping criteria--is also evaluated

    Inventory Investment, Internal-Finance Fluctuation, and the Business Cycle

    Get PDF
    macroeconomics, inventory investment, internal-finance fluctuation, business cycle

    High resolution spectroscopy of the 11.3 micron emission band

    Get PDF
    High resolution spectra of the 11.3 micron emission band in M82 and NGC 7027 were obtained using the University of Texas IR echelle spectrometer on the IRTF in April 1988. The spectral resolution was 0.004 micron, with coverage from 11.0 to 11.6 microns. Spectra were measured at ten positions along a 10 min. long slit. Analysis of the data is still in progress, but initial results show no clear evidence of narrow structure within the feature. The analysis will involve comparison of the observed spectra to laboratory and predicted spectra of Polycylic Aromatic Hydrocarbons (PAHs) and Quenched Carbonaceous Composite (QCCs) to determine which may be responsible for the emission. The spectra will be examined with a goal of determining whether the emission is caused by molecular or solid state material. The data are also examined for evidence of variations in the shape and strength of the 11.3 micron feature with position on the sky. In NGC 7027 the 10 min. long slit went across the edge of the ionized nebulae, allowing comparison of emission from both ionized and neutral regions

    Entropic lattice Boltzmann methods

    Full text link
    We present a general methodology for constructing lattice Boltzmann models of hydrodynamics with certain desired features of statistical physics and kinetic theory. We show how a methodology of linear programming theory, known as Fourier-Motzkin elimination, provides an important tool for visualizing the state space of lattice Boltzmann algorithms that conserve a given set of moments of the distribution function. We show how such models can be endowed with a Lyapunov functional, analogous to Boltzmann's H, resulting in unconditional numerical stability. Using the Chapman-Enskog analysis and numerical simulation, we demonstrate that such entropically stabilized lattice Boltzmann algorithms, while fully explicit and perfectly conservative, may achieve remarkably low values for transport coefficients, such as viscosity. Indeed, the lowest such attainable values are limited only by considerations of accuracy, rather than stability. The method thus holds promise for high-Reynolds number simulations of the Navier-Stokes equations.Comment: 54 pages, 16 figures. Proc. R. Soc. London A (in press

    The Effects of Individual Vessel Quotas in the British Columbia Halibut Fishery

    Get PDF
    Implementation of Individual vessel quotas (IVQs) in the British Columbia halibut fishery has provided a unique opportunity to examine the effects of this management technique on a previously intense "derby" fishery. This paper describes the changes that have occurred in the fishery since the introduction of individual vessel quotas in 1991. The results presented here are largely based on the findings of two surveys. In September 1993, we conducted in-depth interviews with most of the major halibut processors in British Columbia. These processors reported significant changes in the processors and marketing of halibut. In Spring 1994, we conducted a mail survey of all 435 licensed halibut fishermen. The survey consisted of several series of questions designed to measure changes in fishing operations (crew size, fishing practices, etc.). quota leasing activities, changes in fishing income, and opinions about the effects of IVQs. The results presented here provide important information about the effects of the British Columbia halibut IVQ program to date and will be useful for comparison to similar management programs implemented elsewhere.fishery management, ITQs, Pacific Halibut, Environmental Economics and Policy, International Relations/Trade, Resource /Energy Economics and Policy,

    The Gut Microbiome in Neuromyelitis Optica.

    Get PDF
    Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship

    A Robust Numerical Method for Integration of Point-Vortex Trajectories in Two Dimensions

    Full text link
    The venerable 2D point-vortex model plays an important role as a simplified version of many disparate physical systems, including superfluids, Bose-Einstein condensates, certain plasma configurations, and inviscid turbulence. This system is also a veritable mathematical playground, touching upon many different disciplines from topology to dynamic systems theory. Point-vortex dynamics are described by a relatively simple system of nonlinear ODEs which can easily be integrated numerically using an appropriate adaptive time stepping method. As the separation between a pair of vortices relative to all other inter-vortex length scales decreases, however, the computational time required diverges. Accuracy is usually the most discouraging casualty when trying to account for such vortex motion, though the varying energy of this ostensibly Hamiltonian system is a potentially more serious problem. We solve these problems by a series of coordinate transformations: We first transform to action-angle coordinates, which, to lowest order, treat the close pair as a single vortex amongst all others with an internal degree of freedom. We next, and most importantly, apply Lie transform perturbation theory to remove the higher-order correction terms in succession. The overall transformation drastically increases the numerical efficiency and ensures that the total energy remains constant to high accuracy.Comment: 21 pages, 4 figure
    • …
    corecore