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a b s t r a c t

A poset is (3+1)-free if it contains no induced subposet isomorphic
to the disjoint union of a 3-element chain and a 1-element chain.
These posets are of interest because of their connection with
interval orders and their appearance in the (3+1)-free Conjecture
of Stanley and Stembridge. The dimension 2 posets P are exactly
the ones which have an associated permutation π where i ≺ j in
P if and only if i < j as integers and i comes before j in the one-
line notation of π . So we say that a permutation π is (3 + 1)-free
or (3 + 1)-avoiding if its poset is (3 + 1)-free. This is equivalent
to π avoiding the permutations 2341 and 4123 in the language of
pattern avoidance. We give a complete structural characterization
of such permutations. This permits us to find their generating
function.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The permutation π of [n] = {1, 2, . . . , n} contains the permutation σ of [k] if π has a subsequence
of length k order isomorphic to σ , and such a subsequence is called an occurrence, or copy, of σ . For
example, π = 391 867 452 (written in list, or one-line notation) contains σ = 51 342, as can be seen
by considering the subsequence 91672 (= π(2), π(3), π(5), π(6), π(9)). If π does not contain σ
we say that π avoids σ . A permutation class, sometimes abbreviated to simply class, is a downset of
permutations under this order; thus if C is a permutation class, π ∈ C, and π contains σ , then σ ∈ C.
Every permutation class can be described by theminimal permutations which are not in the class. We
call such a set a basis, and denote by Av(B) the class with basis B.
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Given a class C, we denote by Cn the set of permutations in C of length n. It is natural to ask for the
enumeration of C and this is usually answered in terms of its generating function,−

π∈C

x|π |
=

−
n≥0

|Cn|xn.

The class wewill consider in this paper is motivated by ideas in the theory of posets (partially ordered
sets). Call a poset (a + b)-free if it contains no induced subposet isomorphic to a disjoint union of an
a-element chain and a b-element chain. Fishburn [6] characterized the (2 + 2)-free posets as those
which could be modeled by intervals of real numbers, where we let [a, b] < [c, d] if and only if b < c
so that [a, b] is completely to the left of [c, d] on the real line. He also characterized the posets which
are both (2+2)- and (3+1)-free as those interval orders where all the intervals have length one. But
until more recently there has been no characterization of (3+ 1)-free posets. These posets also come
up in the (3 + 1)-free Conjecture of Stembridge and Stanley [16]. Stanley [15] defined a symmetric
function generalization XG of the chromatic polynomial of a graph G. The conjecture in question states
that if one takes the incomparability graph G of a (3 + 1)-free poset (making two vertices adjacent
in the graph if the corresponding elements are incomparable in the poset) and expresses XG in the
elementary symmetric function basis, then all the coefficients are nonnegative. To date there has been
only partial progress on this question by Gasharov [7], Gebhard and Sagan [8], and Lee and Sagan [13].

As is well-known, every permutation π gives rise to a poset Pπ by letting i ≺ j in Pπ if and only if
i < j and i appears to the left of j in π . The posets arising this way are exactly those of dimension 2.
Call a permutation π(3 + 1)-free or (3 + 1)-avoiding if its poset is (3 + 1)-free. Note that Pπ = 3 + 1
precisely when π = 2341 or 4123. So the class of (3 + 1)-free permutations is Av(2341, 4123). In
this paper we completely characterize the elements in this class. Using this characterization, we are
able to compute the corresponding generating function. The hope is that this viewpoint might also
be useful in making progress on the (3 + 1)-free Conjecture in the case of dimension 2 posets. We
should mention that Skandera [14] has a useful characterization of all (3 + 1)-free posets. But this
characterization involves conditions on the entries of the square of the antiadjacency matrix of the
poset and so seems to be quite different from ours.

A secondary motivation for enumerating the class Av(2341, 4123) is that it belongs to a family
of classes which have proved to be a fertile testing ground for different enumerative techniques. For
bases B consisting of a single permutation of length atmost 4, exact enumerations for Av(B) are known
except in the notable case of B = {1324} (or its symmetry, B = {4231}). (Here only lower and upper
bounds are known, see [2,5].) For bases B consisting of two permutations, exact enumerations are
known in the case where one element of B has length at most 3 and the other has length at most 4.
However, in the case where B consists of two permutations of length 4, much less is known.

The permutation containment relation is invariant under the 8 symmetries generated by reversal,
complementation, and inversion. These symmetries can be used to cut down the number of cases; in
particular, the


24
2


different sets B consisting of two permutations of length 4 split into 56 different

symmetry classes. Of these 56 essentially different classes, it is known that there are 38 different
enumerations, which follows from a long string of papers [4,9–12]. Only about half of these have been
enumerated.

The approach we use here to enumerate Av(2341, 4123) is based on simple permutations,
so we briefly recall the salient definitions and properties. An interval of a permutation π =

π(1)π(2) · · · π(n) is a contiguous subsequence π(i)π(i+1) · · · π(j) whose values form a contiguous
set of integers. If a permutation has no intervals except for itself and its singletons then it is said to
be simple. For example, 871329456 has nontrivial intervals 87, 132, and 456, while 31524 is simple.
Fig. 1 shows the plots of three further simple permutations; in this diagram and, in subsequent similar
diagrams, the dots are placed at Cartesian coordinates (i, π(i)).

Simple permutations are precisely those that do not arise from a non-trivial inflation, in
the following sense. Let σ be any permutation of length m and α1, α2, . . . , αm any sequence
of permutations. Then the inflation of σ by α1, α2, . . . , αm, denoted σ [α1, α2, . . . , αm], is the
permutation of length |α1| + · · · + |αm| which decomposes intom segments α′

1α
′

2 · · · α′
m where each

segment α′

i is an interval which is order isomorphic to αi, and the sequence a1a2 · · · an formed by any
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Fig. 1. The two simple permutations on the left are the 123-avoiding parallel alternations. The permutation shown on the right
is another simple permutation in Av(2341, 4123).

Fig. 2. The two types of permutations in Av(123, 3412). Throughout this paper, D denotes the class of decreasing
permutations, i.e., Av(12).

(and hence every) choice of ai from α′

i is order isomorphic to σ . For example the inflation of 3142 by
21, 132, 1, 123 is

3142[21, 132, 1, 123] = 87 132 9 456.

The precise connection between simple permutations and inflations is furnished by a result
from [1].

Lemma 1.1. For every permutation π there is a unique simple permutation σ such that

π = σ [α1, α2, . . . , αm].

Furthermore, except when σ = 12 or σ = 21, the intervals of σ that correspond to α1, α2, . . . , αm are
uniquely determined. In the case that σ = 12 (respectively σ = 21), the intervals are unique so long as
we require the first of the two intervals to be sum (respectively, skew) indecomposable , which means
that it cannot be decomposed further as a nontrivial inflation of 12 (respectively, of 21).

One important feature of Av(2341, 4123) is that it is a sum closed class, meaning that if σ and π
lie in Av(2341, 4123) then 12[σ , π] also lies in Av(2341, 4123). The generating function for any sum
closed class is easily seen to be 1/(1 − g), where g is the generating function for the non-empty sum
indecomposable permutations in the class.

A final lemma which we use was proved by Atkinson [3].

Proposition 1.2. Every permutation in Av(123, 3412) is either a horizontal or a vertical juxtaposition of
two decreasing permutations (see Fig. 2).

2. Categories of simple permutations in Av(2341, 4123)

In this section we categorize simple permutations in Av(2341, 4123) according to whether they
contain or avoid the permutations 123 and 3412.

Proposition 2.1. Let σ be any simple permutation of Av(2341, 4123) that contains both 123 and 3412.
Then σ = 5 274 163.
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Fig. 3. The first structure diagram for the simple 3412-containing permutation σ ∈ Av(4123, 2341).

Fig. 4. The second and third structure diagrams for the simple 3412-containing permutation σ ∈ Av(4123, 2341).

Proof. Consider a simple permutation σ ∈ Av(2341, 4123) that contains both 123 and 3412.
Fig. 3 shows σ with the 5×5 grid defined by a copy of 3412. The unlabeled cellsmust be empty and

the cells labeledD (with orwithout a subscript)must be decreasing; this is a direct consequence of the
avoidance conditions. Another consequence (not shown in Fig. 3 but shown in subsequent diagrams)
is that every point in D3 is to the right of every point in D1, and every point in D2 is to the right of
every point inD4. If we choose the copy of 3412 so that the ‘4’ and the ‘1’ points are as close (vertically)
as possible then the two cells labeled Z must be empty and the cell labeled Y must be decreasing.

However, rathermore can be gleaned from the vertical proximity of the ‘4’ and ‘1’. Consider the two
cells D1 and D2 that flank the center cell labeled Y . There can be no increase from D1 to Y nor from Y
to D2 because any such increase would result in a copy of 3412 with a closer ‘4’ and ‘1’. The diagram
on the left of Fig. 4 displays these conditions. Again in this diagram all cells that are not labeled are
empty, and no claim is yet made about the four corner cells labeled Ci.

Notice that the central D cell is either empty or consists of a single point; if it were any larger it
would comprise a non-trivial interval. Now consider the cell labeled C1 and the D cell to its right. If
any entry in this pair of cells was larger than any entry of C2 we would have a copy 4123. Similarly, if
any entry in the cell labeled C4 or the D cell above it were to the right of an entry in the cell labeled
C2 then we would have a copy of 2341. Therefore the entries in the cell labeled C2 must lie above and
to the right of all other entries in σ , and so C2 must be empty by simplicity. Similarly, it can be seen
that C3 must be empty. This gives the diagram on the right of Fig. 4.
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In this diagram the 2 × 2 array of cells in the top-left cannot contain 123 (since that would give
a copy of 2341). Similarly, the 2 × 2 array of cells in the bottom-right cannot contain 123. However,
we have assumed that σ contains a copy of 123. By inspection, this copy of 123 must be formed by an
entry in D3, an entry in the central D cell (which is known to be at most a singleton), and an entry in
D4. This, by the avoidance conditions, implies that the cells labeled C1 and C4 must be empty.

Now consider the cell in the top row labeled D . This cell cannot contain an entry to the left of an
entry in the D3 cell because that would create a copy of 4123, so all of the entries in this cell must
lie to the right of all of the entries in D3. However, if there are any such entries, then they would
form an interval with the ‘4’ of the identified copy of 3412, so the D cell in the top row must be
empty. Similarly, it can be seen that the three other peripheralD cells are empty. By simplicity it then
follows that the cells labeled D1 and D2 must be empty and that D3 and D4 must be singletons. This
shows that σ = 5 274 163, as desired. �

Corollary 2.2. If σ is a simple permutation in Av(2341, 4123) then either

1. σ contains 123 but not 3412,
2. σ contains 3412 but not 123,
3. σ contains both 123 and 3412 and is the permutation 5 274 163,
4. σ contains neither 123 nor 3412. There are exactly two such permutations of this type of every even

length n ≥ 4.

Proof. The final alternative is the only one that does not followdirectly fromProposition 2.1. However
the form of permutations in Av(123, 3412) is given in Proposition 1.2. Such a permutation can
be simple only if the two decreasing sequences shown in that proposition exactly interlace and
the permutation neither begins with its largest entry nor ends with its smallest entry. Hence the
permutation must have even length and there is one such permutation for each length for each of
the two forms in Proposition 1.2. �

3. The structure of simple permutations in Av(2341, 4123, 3412)

We now work towards a description of the simple permutations in Av(2341, 4123, 3412). The
following result, which actually holds for all permutations in this class, is a stepping stone towards
that goal.

Proposition 3.1. Every permutationπ ∈ Av(2341, 4123, 3412) in which the greatest entry precedes the
least entry has one of the two forms shown in Fig. 5.

Proof. Consider an arbitrary permutation π ∈ Av(2341, 4123, 3412) of length n in which n precedes
1. If either n is the first entry or 1 is the final entry, then the remainder of π avoids 123 and 3412,
and the result follows from Proposition 1.2. Suppose now that n is not the first entry of π and that 1
is not the last entry of π . Because π avoids 3412, this implies that π(1) < π(n), giving the situation
depicted on the left of Fig. 6.

From the fact that π avoids 2341, we see that the cells labeled C1 and C2 must be empty, while
the cell D1 must be decreasing. Using the 4123 avoidance of π , we see that the cells labeled C3 and C4
must be empty, while the cell D2 must be decreasing. This gives the center diagram of Fig. 6.

The 2341-avoidance proves that the region Y ∪ Z is decreasing, while the 4123-avoidance proves
that X ∪ Y is decreasing. If the entire region X ∪ Y ∪ Z is decreasing then π has the structure shown
on the left of Fig. 5, and we are done.

So suppose to the contrary that X∪Y∪Z is not decreasing. Then cell Y must be empty. Furthermore,
the first (and largest) point of cell X must precede the last (and smallest) point of cell Z and it follows
from the 2341, 4123-avoidance again that the cell X and the cell labeled D to its left must form a
single decreasing sequence, as must the cell Z and the cell labeled D to its right. The permutation π is
therefore a vertical juxtaposition of decreasing sequences, which is the structure on the right of Fig. 5,
completing the proof. �
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Fig. 5. The two types of permutation in Proposition 3.1. As usual, cells labeled by D represent decreasing sequences.

Fig. 6. Structure diagrams for a permutation in Av(2341, 4123, 3412) in which n precedes 1 but n is not the first entry and 1
is not the last entry.

Corollary 3.2. Every permutation of length n in Av(2341, 4123, 3412) whose first entry is greater than
its last entry has one of the forms of Fig. 7.

Proof. The permutations of the corollary are the inverses of the permutations of Proposition 3.1.
The result follows because inversion is represented by reflection of permutation diagrams about the
southwest–northeast diagonal and Av(2341, 4123, 3412) is closed under taking inverses. �

The previous two results have described very restricted subsets of Av(2341, 4123, 3412). We now
broaden our study to consider arbitrary permutations in this class. Recall that the entry π(j) of π is
a left-to-right maxima (l–r max for short) if π(j) > π(i) for all i < j, and a right-to-left minima (r–l
min for short) if π(j) < π(k) for all k > j. It is convenient to connect the l–r maxes and connect the
r–l mins by axes-parallel paths as depicted in Fig. 8. In this relative extrema diagram the entries of the
permutation are depicted by circles as usual while the squares denote inflections in the axes-parallel
paths. From the definition of l–r maxes and r–l mins, it follows that there are no entries above the l–r
max path and no entries below the r–l min path.

In our situation there are strong conditions on the interaction between the l–r maxes and the r–l
mins.

Lemma 3.3. If π ∈ Av(2341, 4123, 3412) is sum indecomposable then the inflection points form an
increasing sequence in which the inflections associated with the l–r maxes alternate with the inflections
associated with the r–l mins.

Proof. The inflections associated with the l–r maxes are all increasing by definition, as are the
inflections associated with the r–l mins. To show that their union is increasing we just have to show
that neither of the two situations on the left of Fig. 9 can arise.

The first situation in Fig. 9 cannot arise, because it contains 3412. Now suppose that the second
situation of Fig. 9 occurs in one of these permutations. The inflection in the lower-right position
comes from the l–r max path, so π cannot contain any entries above this path. Similarly, π cannot
contain any entries below the r–l min path. This implies that π must be sum decomposable, which is
a contradiction.
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Fig. 7. The two types of permutation in Corollary 3.2.

Fig. 8. L–r maxes and r–l mins in an arbitrary permutation, connected by axes-parallel paths.

Fig. 9. Four illegal configurations for a permutation in Av(2341, 4123, 3412).

It remains to show that the two types of inflection alternate. Essentially, the onlyway this property
can fail is if the permutation contains the third or fourth situation from Fig. 9. Both of these situations
contain a copy of either 2341 or 4123, completing the proof. �

This lemma holds, of course, for all simple permutations in Av(2341, 4123, 3412) (of length more
than 2) and we now build on it to pin down the structure of such permutations. Fig. 10 shows one of
the two ways in which the l–r maxes can interact with the r–l mins in such a simple permutation. In
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Fig. 10. One of two possible interactions of l–r maxes and r–l mins in a permutation whose inflection points satisfy the
conditions of Lemma 3.3.

Fig. 11. The possible forms of the rectangles defined by two consecutive l–r maxes and two consecutive l–r mins in a simple
permutation in Av(2341, 4123, 3412).

this figure the leftmost inflection is associatedwith the l–rmaxes; the otherway iswhere the leftmost
inflection is associated with the r–l mins and the two types are related by inversion.

Fig. 10 shows the permutation partitioned into cells: these cells are called corner cells if they abut
a l–r max or a r–l min, and central cells otherwise. Successive corner cells, except for the first two and
final two, are always separated by a central cell. As we shall soon see there are strong dependencies
between consecutive cells.

We call the rectangles of Fig. 11 formed from the l–rmaxes and r–lmins of a simple permutation in
Av(2341, 4123, 3412) the ‘‘tiles’’ of the permutation, and we say that each tile is of type 2413 or 3142
(the type being determined by the relative order of the four extremal entries). Thewhole permutation
is then a union of overlapping, alternating tiles (overlapping in strips and alternating in type). Since
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we know the structure of the tiles and that they must fit together with compatible intersections we
can deduce strong consequences for the cells of a permutation.

To give suggestive names to the tiles in Fig. 11 call the diagrams in the first row and left-to-
right. Similarly call the second row diagrams and .

Theorem 3.4. A simple permutation π of length more than 2 lies in Av(2341, 4123, 3412) if and only if
it satisfies the following four conditions.

(a) The inflection points form an increasing sequence inwhich the inflections associatedwith the l–rmaxes
alternate with the inflections associated with r–l mins.

(b) The corner cells of π are decreasing.
(c) Every pair of consecutive corner cells either form a decreasing sequence or interlace as a parallel

alternation in the sense of Fig. 1.
(d) A non-empty corner cell interlaces with either the previous or next corner cell, but not both.
(e) A central cell s contains at most one element. If the two corners adjacent to it interlace then s is empty;

otherwise these two cells together with s form a decreasing sequence.

Proof. We first prove that every simple permutation in Av(2341, 4123, 3412) satisfies (a)–(e),
beginning by observing that (a) is a direct consequence of Lemma 3.3. By (a), the graph of π can be
decomposed into tiles of one of the four forms shown in Fig. 11. All corners in these tiles are decreasing,
so (b) must hold.

To prove (c) consider any two consecutive corner cells. We shall assume that they are neither
the first nor the last pair of corner cells (these exceptional cases are treated by an almost identical
argument). The two corner cells are separated by some central cell and lie in a tile in which they are
the second and third corners of the tile. If the tile is of type or then these cells form a decreasing
sequence. If the tile is of type or then theymust interlace as a parallel alternation for otherwise
one of the cells will contain two elements forming a block or a single element forming a block with
the l–r max or r–l min on its boundary, which contradicts simplicity.

To prove (d) let A, B, C be 3 consecutive corner cells with the middle cell B non-empty. Consider a
tile containing themwhose first three corner cells correspond to A, B, C (the case where the last three
corner cells of the tile correspond to A, B, C is similar). If this tile is of type or then A ∪ B is
decreasing while, by the argument of (c), B and C interlace. If the tile is of type or then B∪ C is
certainly decreasing. But, if A ∪ B is also decreasing then B, together with its abutting extremal point,
would be a non-trivial interval of π contradicting simplicity.

For the proof of (e) note first that every central cell s of π is the central cell of some tile and we
have already observed that such central cells have at most one point. If the adjacent corner cells of
this tile interlace then the tile has type or and so s is empty. Otherwise the adjacent corners
form a decreasing sequence and (if this is non-empty) the tile has type or in which case the
corners also form, together with s, a decreasing sequence.

For the converse letπ be any permutation satisfying (a)–(e). Condition (a) shows that the l–rmaxes
and r–lmins ofπ orπ−1 interlace as shown in Fig. 10 and conditions (b)–(e) show that thepermutation
is an overlapping union of the tiles shown in Fig. 11.

If π contains a copy of 2341 then, by replacing the ‘1’ in this copy by a subsequent smaller point if
necessary, we may take the ‘1’ to be a r–l min. Then (see Fig. 10) the points corresponding to the ‘2’,
‘3’, and ‘4’ must lie in the 4 or 5 cells that contain points before and larger than the ‘1’. In particular
a copy of 2341 is contained in a tile and, from the form of the tiles, this is impossible. Thus π avoids
2341 and, by a similar argument also avoids 4123.

Suppose now that π contains a copy of 3412. The ‘3’ in this copy must be contained in a cell
associated with a l–r max because points in other types of cell are never followed by a smaller
increasing pair of points. The ‘4’ in this copy is not contained in the same cell as the ‘3’ nor in the
immediately succeeding central cell (since, from the form of the tiles, the entries in adjacent cells
form a decreasing sequence). Hence the only location where the ‘1’ and ‘2’ can be situated is in the
corner cell following the one that contains the ‘3’, but that is impossible as cells are decreasing.

To showπ is simple, we again seek a contradiction and suppose that it contains a nontrivial block B.
The subsequence ofπ consisting of all l–rmaxes and all r–lmins is isomorphic to a simple permutation
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(see Fig. 10). So if B contains more than one point of this subsequence it must contain every point and
we would have B = π which contradicts nontriviality. Otherwise B must be contained in a tile, but
the tiles themselves are easily seen to be simple. This final contradiction finishes the proof of the
converse. �

4. Enumeration of simple permutations in Av(2341, 4123, 3412)

As we saw in the previous section simple permutations in Av(2341, 4123, 3412) of length more
than 2 have their leftmost inflection point associated with either a l–r max or a r–l min and, as these
two types are related by an inversion, there are equal numbers of each in every length. So we shall
enumerate those whose leftmost inflection is associated with a l–r max and then double the result.

We shall obtain the generating function of this set as a sum of terms, with a typical term counting
simple permutations in which there are n extremal points (and therefore n corner cells), a fixed set of
k interlacing corner pairs, and t central cells (lying between non-interlacing corner cells) that can have
0 or 1 point. The set of simple permutations of such a type is enumerated by the generating function

xnykzt (1)

where y = x2/(1 − x2) and z = 1 + x. This is because every interlacing pair of corner cells
contributes some positive even number of points to the permutation while each central cell between
non-interlacing corners contributes 0 or 1 point to the permutation.

Note that there are n − 3 central cells because there is no central cell between the first and last
pairs of corner cells. So the value of t depends onwhether the first pair of corner cells and the last pair
are among the set of k interlacing pairs. There are 3 different cases:

1. Both the first and last pairs of corner cells interlace. Here t = n − 3 − (k − 2) = n − k − 1.
2. Only the first pair or the last pair of corner cells interlaces. Here t = n − 3 − (k − 1) = n − k − 2.
3. Neither the first nor the last pairs of corner cells interlace. Here t = n − 3 − k = n − k − 3.

To find the number of choices for the k interlacing pairs of corner cells in each of these 4 cases we
make use of the following well-known result.

Lemma 4.1. The number of ways of picking ℓ non-overlapping pairs (i, i + 1) from {1, . . . ,m} is
m − ℓ

ℓ


.

In the first case of the above 3 possibilities two of the k pairs are already chosen and the remaining
k − 2 pairs have to be chosen from the interior n − 4 corner cells: this can be done in


n−4−(k−2)

k−2


ways by the previous lemma. Similarly the second and third cases give, respectively, 2


n−3−(k−1)

k−1


and


n−2−k

k


choices for selecting the k interlacing pairs of corner cells.

Hence, for fixed n, the sum of all the terms in expression (1) over all choices of k interlacing corner
pairs is

n − k − 2
k − 2


xn−k−1

+ 2

n − k − 2
k − 1


zn−k−2

+


n − k − 2

k


zn−k−3


xnyk.

So we need to sum the above expression over n ≥ 4 (since there are no simples for n ≤ 3) and k ≥ 0.
This double summation is first summed over n using the binomial expansion and then over k as a
geometric series (taking care of the boundary cases k = 0 and k = 1 separately). The end result is

x4z
1 − xz

+
x4y

(1 − xz)2
+

2x4yz
1 − xz

+
x4y2z(1 − xz + x)2

(1 − xz)2(1 − xz − x2yz)
.

Expressing this in terms of x and, multiplying by 2, we obtain
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Theorem 4.2. The generating function for simple permutations of length greater than or equal to 4 in
Av(2341, 4123, 3412) is

2(x4 + x6 + x9)
(1 − x2)(1 − 2x + x3 − x4)

.

5. The enumeration of Av(2341, 4123)

We now only have to assemble the pieces we have developed. We begin by determining the
allowed inflations in this class.

Proposition 5.1. Let σ ∈ Av(2341, 4123) be a simple permutation of length m ≥ 4. The inflation
σ [α1, . . . , αm] lies in Av(2341, 4123) if and only if every αi is a decreasing sequence.

Proof. First, if each αi is decreasing then any copy of 2341 or 4123 in σ [α1, . . . , αm] could contain at
most one entry from each αi, which is impossible because σ itself avoids 2341 and 4123.

Now take σ [α1, . . . , αm] ∈ Av(2341, 4123) and suppose to the contrary that αi contains 12 for
some index i. Then σ(i) must not be the ‘2’ or the ‘3’ in a copy of 231 (in σ ), because that would
lead to a copy of 2341 in σ [α1, . . . , αm]. Similarly, σ(i) is neither the ‘1’ nor the ‘2’ in a copy of 312.
Because σ(i) is not the ‘2’ in a copy of 231, the entries of σ to the right of σ(i) must consist of a
series of entries below σ(i) followed by entries of terms above σ(i). The other three conditions imply
similar restrictions on the entries below σ(i), the entries to the left of σ(i), and the entries above
σ(i). These restrictions are displayed in Fig. 12 (following our conventions, unlabeled cells are empty
in this diagram) which shows that σ is sum decomposable if either W or Z is non-empty or skew
decomposable if W and Z are both empty; in particular σ is not simple. �

Because Av(2341, 4123) is sum closed, its generating function, which we label f , satisfies f =

1/(1−g), where g denotes the generating function for nonempty sum indecomposable permutations
in the class. Therefore we need only determine g . Because we will often be inflating permutations by
decreasing sequences, it is convenient to define d = x/(1−x). Using Corollary 2.2 the set of nonempty
sum indecomposable permutations in Av(2341, 4123) is then the union of

(i) the permutation 1,
(ii) inflations of 21 by permutations in Av(123), where the first entry is inflated by a skew

indecomposable permutation,
(iii) inflations of simple permutations of length at least 4 in Av(123) = Av(2341, 4123, 123) by

decreasing sequences,
(iv) inflations of simple permutations of length at least 4 in Av(2341, 4123, 3412) by decreasing

sequences, and
(v) inflations of 5 274163 by decreasing sequences.

These sets are disjoint except for an intersection between those of types (iii) and (iv). This intersection
consists of the inflations of 123-avoiding parallel alternations (see Fig. 1), of which there are two of
every even length, so we have

g.f. for (iii) ∩ (iv) =
2d4

1 − d2
.

Notice that the sets of type (i)–(iii) together comprise the set of non-empty sum indecomposable
permutations of Av(123). As every permutation is either sum indecomposable or sum decomposable,
we can obtain the generating functions of these permutations by subtracting the generating function
of sum decomposable permutations from the generating function for the non-empty permutations
of Av(123). The sum decomposable permutations in Av(123) are inflations of 12 by decreasing
sequences, so we see

g.f. for (i)–(iii) = c − d2,
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Fig. 12. The situation in the proof of Proposition 5.1: σ(i) is not the ‘2’ or ‘3’ in a copy of 231, nor the ‘2’ in a copy of 312, nor
the ‘1’ in a copy of 312.

where c = (1 − 2x −
√
1 − 4x)/(2x) is the generating function for the non-empty permutations in

Av(123).
Finally, Theorem 4.2 gives us the generating function for sum indecomposable permutations of

type (iv):

g.f. for (iv) =
2(d4 + d6 + d9)

(1 − d2)(1 − 2d + d3 − d4)
,

and sum indecomposable permutations of type (v) are counted by d7.
Putting all these expressions together gives the following theorem.

Theorem 5.2. The generating function f for Av(2341, 4123) has the form f = 1/(1 − g) where

g =
(1 − 2x −

√
1 − 4x)

2x

−
(1 − 13x + 74x2 − 247x3 + 539x4 − 805x5 + 834x6 − 595x7 + 283x8 − 80x9 + 8x10)x2

(1 − x)7(1 − 2x)(1 − 6x + 12x2 − 9x3 + x4)
.

Further calculations with a computer algebra package such as Singular shows that f satisfies the
quadratic

(144x25 − 3524x24 + 38648x23 − 259931x22 + 1231750x21 − 4420385x20 + 12533805x19

− 28844031x18 + 54839380x17 − 87179343x16 + 116833299x15 − 132706667x14

+ 128169929x13 − 105396633x12 + 73761400x11 − 43835832x10 + 22029889x9

− 9301917x8 + 3269458x7 − 944215x6 + 220007x5 − 40293x4 + 5578x3 − 548x2

+ 34x − 1)f 2 + (−48x25 + 1380x24 − 17556x23 + 134339x22 − 708318x21

+ 2775400x20 − 8464162x19 + 20701382x18 − 41428652x17 + 68785738x16

− 95667058x15 + 112183057x14 − 111372132x13 + 93798415x12 − 67025068x11

+ 40562377x10 − 20710152x9 + 8865879x8 − 3153464x7 + 920002x6 − 216192x5

+ 39867x4 − 5548x3 + 547x2 − 34x + 1)f + (4x25 − 132x24 + 1921x23

− 16624x22 + 97464x21 − 416740x20 + 1361690x19 − 3508914x18 + 7290078x17

− 12404442x16 + 17480077x15 − 20556472x14 + 20271017x13 − 16800814x12

+ 11703343x11 − 6835800x10 + 3331377x9 − 1343826x8 + 443390x7 − 117616x6

+ 24459x5 − 3838x4 + 427x3 − 30x2 + x) = 0.
The growth rate of the class C is the limit of n

√
|Cn| as n → ∞ (if this limit exists). In our case, this

is the reciprocal of the least positive root of the discriminant of the minimal polynomial above, which
is 4, the same as the growth rate of Av(123).
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