3,071 research outputs found

    Impact of COVID-19 and Future Emerging Viruses on Hematopoietic Cell Transplantation and Other Cellular Therapies

    Get PDF
    COVID-19, where Co stands for corona, VI stands for virus, and D denotes disease, in the recent past referred to as 2019 novel coronavirus or 2019-nCoV, has impacted numerous lives and businesses, and has led to a surreal emergency state within world communities. COVID-19 and the future emergence of dangerous viruses will have strong and as yet possibly unanticipated consequences and impact on the present and future use of cellular therapies. In this commentary, we offer a dispassionate assessment of where we believe COVID-19, as well as future emerging viruses, might compromise successful cell transplantation (Fig. 1). These therapies include hematopoietic cell transplantation (HCT) using umbilical cord blood (CB), bone marrow (BM), and mobilized peripheral blood, which contain hematopoietic stem (HSC) and progenitor (HPC) cells, as well as various cellular populations involved in the emerging fields of reparative and regenerative medicine. Such cell populations include HSC, HPC, mesenchymal stem/stromal cells (MSC), and immune cells such as lymphocytes used in chimeric antigen receptor (CAR) T-cell therapies, as well as pluripotent stem cell–based therapies

    Inhibiting HDAC for human hematopoietic stem cell expansion

    Get PDF
    In this issue of the JCI, Chaurasia and colleagues report an impressive ex vivo expansion of HSCs from human cord blood (CB) using cytokines and altering epigenetic modifications. The application of this protocol provides information that has potential for clinical consideration. The enhanced expansion of CB HSCs is a substantial advance over recent work from the Chaurasia and Hoffman group, in which ex vivo production of human erythroid progenitor cells from CB was promoted by chromatin modification. Moreover, this study takes advantage of information from the rapidly emerging, but not yet fully elucidated, field of epigenetics

    RHEX in the mix of erythropoietin signaling molecules

    Get PDF
    Comment on RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development. [J Exp Med. 201

    Applications of inertial navigation and modern control theory to the all weather landing problem

    Get PDF
    Inertial navigation and automatic landing control theory applied to instrument landing proble

    Hypoxia Signaling Pathway in Stem Cell Regulation: Good and Evil

    Get PDF
    Purpose of Review: This review summarizes the role of hypoxia and hypoxia-inducible factors (HIFs) in the regulation of stem cell biology, specifically focusing on maintenance, differentiation, and stress responses in the context of several stem cell systems. Stem cells for different lineages/tissues reside in distinct niches, and are exposed to diverse oxygen concentrations. Recent studies have revealed the importance of the hypoxia signaling pathway for stem cell functions. Recent Findings: Hypoxia and HIFs contribute to maintenance of embryonic stem cells, generation of induced pluripotent stem cells, functionality of hematopoietic stem cells, and survival of leukemia stem cells. Harvest and collection of mouse bone marrow and human cord blood cells in ambient air results in fewer hematopoietic stem cells recovered due to the phenomenon of Extra PHysiologic Oxygen Shock/Stress (EPHOSS). Summary: Oxygen is an important factor in the stem cell microenvironment. Hypoxia signaling and HIFs play important roles in modeling cellular metabolism in both stem cells and niches to regulate stem cell biology, and represent an additional dimension that allows stem cells to maintain an undifferentiated status and multilineage differentiation potential

    Enhancing the efficacy of engraftment of cord blood for hematopoietic cell transplantation

    Get PDF
    Clinical cord blood (CB) hematopoietic cell transplantation (HCT) has progressed well since the initial successful CB HCT that saved the life of a young boy with Fanconi anemia. The recipient is alive and well now 28 years out since that first transplant with CB cells from his HLA-matched sister. CB HCT has now been used to treat over 35,000 patients with various malignant and non-malignant disorders mainly using HLA-matched or partially HLA-disparate allogeneic CB cells. There are advantages and disadvantages to using CB for HCT compared to other sources of transplantable hematopoietic stem (HSC) and progenitor (HPC) cells. One disadvantage of the use of CB as a source of transplantable HSC and HPC is the limited number of these cells in a single CB collected, and slower time to neutrophil, platelet and immune cell recovery. This review describes current attempts to: increase the collection of HSC/HPC from CB, enhance the homing of the infused cells, ex-vivo expand numbers of collected HSC/HPC and increase production of the infused CB cells that reach the marrow. The ultimate goal is to manipulate efficiency and efficacy for safe and economical use of single unit CB HCT

    Inhibition of DPP4/CD26 and dmPGE2 treatment enhances engraftment of mouse bone marrow hematopoietic stem cells

    Get PDF
    Enhancing the engraftment of hematopoietic stem cells (HSC) is especially important when times to engraftment are prolonged due either to limiting numbers of HSC in the donor graft or to intrinsic slower engrafting time of the tissue sources of HSC. Both inhibition of Dipeptidylpeptidase (DPP) 4/CD26 and treatment of cells with 16,16 dimethyl prostaglandin E2 (dmPGE2) have been shown to enhance hematopoietic stem cell engraftment in murine transplantation models and have been evaluated in clinical settings for their influence on engraftment of cord blood cells, a tissue source of HSC known to manifest an extended time to engraftment of donor cells compared to that of bone marrow (BM) and mobilized peripheral blood for hematopoietic cell transplantation (HCT). Herein, we present new experimental data, using a CD45+ head-to head congenic model of donor mouse BM cells for engraftment of lethally-irradiated mice, demonstrating that similar levels of enhanced engraftment are detected by pulsing donor BM cells with Diprotin A, a DPP4 inhibitor, or with dmPGE2 prior to infusion, or by pretreating recipient mice with sitagliptin, also a DPP4 inhibitor, by oral gavage. Moreover, the combined effects of pretreating the donor BM cells with dmPGE2 in context of pretreating the recipient mice with sitagliptin after administration of a lethal dose of radiation resulted in significantly enhanced competitively repopulating HCT compared to either treatment alone. This information is highly relevant to the goal of enhancing engraftment in human clinical HCT

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT

    Generating Autologous Hematopoietic Cells from Human Induced Pluripotent Stem Cells through Ectopic Expression of Transcription Factors

    Get PDF
    Purpose of review: Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients’ own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Recent findings: Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. Summary: IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models
    corecore