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Abstract

Enhancing the engraftment of hematopoietic stem cells (HSC) is especially important when times

to engraftment are prolonged due either to limiting numbers of HSC in the donor graft or to

intrinsic slower engrafting time of the tissue sources of HSC. Both inhibition of

Dipeptidylpeptidase (DPP) 4/CD26 and treatment of cells with 16,16 dimethyl prostaglandin E2

(dmPGE2) have been shown to enhance hematopoietic stem cell engraftment in murine

transplantation models and have been evaluated in clinical settings for their influence on

engraftment of cord blood cells, a tissue source of HSC known to manifest an extended time to

engraftment of donor cells compared to that of bone marrow (BM) and mobilized peripheral blood

for hematopoietic cell transplantation (HCT). Herein, we present new experimental data, using a

CD45+ head-to head congenic model of donor mouse BM cells for engraftment of lethally-

irradiated mice, demonstrating that similar levels of enhanced engraftment are detected by pulsing

donor BM cells with Diprotin A, a DPP4 inhibitor, or with dmPGE2 prior to infusion, or by

pretreating recipient mice with sitagliptin, also a DPP4 inhibitor, by oral gavage. Moreover, the

combined effects of pretreating the donor BM cells with dmPGE2 in context of pretreating the

recipient mice with sitagliptin after administration of a lethal dose of radiation resulted in

significantly enhanced competitively repopulating HCT compared to either treatment alone. This

information is highly relevant to the goal of enhancing engraftment in human clinical HCT.
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INTRODUCTION

Hematopoietic cell transplantation (HCT), first pioneered using bone marrow (BM) in the

late 1950s and 1960s and later with mobilized peripheral blood stem cells (PBSC) in the

1980s, has been a lifesaving curative procedure to treat patients with malignant and non-

malignant hematologic disorders and inborn errors of metabolism [1,2]. Successful HCT

requires rigorous human leukocyte antigen (HLA)-matching of donors and recipients, but

not all patients in need of an HCT have adequately HLA-matched allogeneic donors

available at the precise time the cells are needed for transplantation. Since the late 1980’s,

human cord blood (CB) has served as an alternative source of hematopoietic stem and

progenitor cells (HSPC) for HCT in over 30,000 transplants [3] since the initial laboratory

[4] and clinical [5] studies identified CB as a source of transplantable HSC.

As a source of HSPC, CB has a number of significant advantages over BM or PBSC for

HCT [6]. Cryopreserved and previously HLA-typed cells are readily and quickly availability

in CB banks. CB has been stored for over 20 years with efficient recovery of HSPC [7],

providing donor cells for patients who require an HCT but for whom a suitably HLA-

matched donor cannot be obtained through BM registries quickly enough or at all. An

additional advantage of CB is lowered graft vs. host disease (GVHD) compared to BM

donor grafts, which has allowed the clinical use of more HLA-disparate grafts [6]. One

disadvantage of CB HSPC compared to BM or PBSC however, is an inherent functional

difference that results in a slower time to neutrophil, platelet and immune cell recovery, a

phenomenon noted for HCT in both pediatric and adult recipients, regardless of whether the

recipients receive a single or double CB HCT [3,6], which translates into longer hospital

stays post-transplant. In addition, single CB HCT in adults has been associated with an

increased rate of graft rejection compared to that of BM.

Various preclinical and clinical efforts have been evaluated with the goal to enhance the

time to engraftment of CB cells by either increasing the homing capabilities of the donor

HSC, or by increasing numbers of HSPC through ex vivo expansion [3,6]. Recently, new

preclinical and clinical studies have shown that enhanced hematopoietic stem cell (HSC)

engraftment can be obtained by inhibition of Dipeptidylpeptidase (DPP) 4 or pulse exposure

of cells to prostaglandin E2 (PGE2) treatment. These novel strategies to enhance HSPC

engraftment are the focus of this present report.

DPP4 is found on the cell surface as CD26, and within cells [8,9]. Short-term pretreatment

of relatively unseparated donor mouse BM or human CB CD34+ cells with Diprotin A, a

DPP4 inhibitor, results in enhanced engraftment of these cells respectively in lethally-

irradiated mouse BM recipients in both competitive and non-competitive HSC assays [10],

and in sublethally-irradiated immune-deficient mice [11,12]. Enhanced engraftment of

untreated mouse BM cells has also been shown when recipient mice are treated sitagliptin,

an orally active DPP4 inhibitor originally approved for and used in the treatment of type II

diabetes [13]. Sitagliptin has recently been used in a clinical setting to pre-treat adult

recipients with end-stage leukemia and lymphoma prior to single unit CB HCT [14,15].

PGE2 is the primary eicosanoid produced by oxidation of arachidonic cascade and is the

most abundant eicosanoid [16,17]. We have previously shown that PGE2 has pleiotropic
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effects on hematopoiesis, affecting HSC and HPC function. PGE2 inhibits myelopoiesis in

vitro and in vivo [18–21] but promotes erythroid and multipotential colony formation in

vitro [22,23]. Short-term ex vivo exposure of mouse or human bone marrow cells to PGE2

stimulated proliferation, cycling and differentiation of quiescent cells leading to an increase

in cycling HPC, suggesting that PGE enhances HSC function [24,25]. Recently, the

stimulatory effects of dmPGE2 on long-term repopulating HSC were demonstrated in

zebrafish and mice [26,27], leading to assessment of its effects in the clinical setting of

double CB HCT [28].

While the effects of DPP4 inhibition or exposure to dmPGE2 have been evaluated

independently, the comparative or combination effects of these compounds have not

previously been reported. Herein, we report the effects of treating donor cells ex-vivo with

Diprotin A or dmPGE2, prior to engraftment in lethally-irradiated mice or after exposing

recipient mice to sitagliptin, using a congenic mouse model of BM HCT.

METHODS AND MATERIALS

Animals

C57Bl/6 (CD45.2+) mice, 6–12 weeks old, were purchased from Jackson Laboratories (Bar

Harbor, Maines). B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1) mice, 6–12 weeks old, were

either purchased from Jackson Laboratories or bred in our NIDDK Center of Excellence in

Molecular Hematology-and NCI-Designated Indiana University Simon Cancer Center-

sponsored animal core facility. C57Bl/6 X BOYJ-F1 (CD45.1/CD45.2) mice were bred in-

house. The Animal Care and Use Committee of IUSM approved all protocols.

Compounds

Diprotin A was purchased from Peptides International (Louisville, KY). Sitagliptin was

purchased from Merck (Rahway, NJ). 16,16 dimethyl Prostaglandin E2 (dmPGE2) was

purchased from Cayman Chemicals (Ann Arbor, MI). dmPGE2 was reduced to dryness

under N2 on ice and reconstituted in 100% ethanol and stored at −20 °C prior to use.

Treatment of cell grafts ex vivo

Treatment of donor cells or recipient mice and engrafting studies were generally done as

previously reported [10,13,27] and as specifically noted in the Figure Legends. Briefly, for

Figure 3, C57Bl/6 (CD45.2+) BM cells were treated with Diprotin A (5mM/106 cells) or

with control diluent for 1 hour at room temperature prior to washing the cells 2X and

admixing with untreated B6.BoyJ competitor (CD45.1+) donor cells at a 1:1 ratio. Similarly,

C57Bl/6 BM cells were incubated with dmPGE2 as previously described [27], (1μM/106

cells for 1 hour at 4 °C with vortexing of cells every 30 minutes) and washed 2X prior to

admixing with CD45.1+ competitor donor cells at a 1:1 ratio. For combination treatment,

BM cells were treated first with dmPGE2 and then sequentially with Diprotin A. In all cases,

two hundred fifty thousand total treated or untreated BM cells were injected i.v., into

lethally-irradiated (950cGy gamma radiation) dual CD45.2+/CD45.1+ (F1) recipient mice. In

some cases, cells were infused 24 hours later into F1 mice that were orally gavaged with
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control diluent or with 200 μg sitagliptin/mouse 4 hours after radiation. Vehicle-treated cells

were pulsed with the equivalent concentration of ethanol.

Competitive Transplantation

Competitive transplantation was performed on a head-to head basis as previously described

[10,13,27]. Five mice per treatment group were used in all experiments to assess the mean

percent chimerism at various times after HCT. The proportion of CD45.1, CD45.2, and

CD45.1/CD45.2 cells in peripheral blood was determined monthly by flow cytometry.

CD45.1-PE and CD45.2-FITC were purchased from BD Biosciences, San Jose, Ca.

Statistics

Students t test was used to determine statistical differences between two treatment groups

within an experiment for Figures 1 and 2. For Figure 3, statistical comparisons on monthly

chimerism in competitive assays were done by ANOVA with Tukey post-hoc test in

GraphPad InStat, GraphPad Software Inc., San Diego, CA.

RESULTS

Comparative Effects of Diprotin A-Pretreated Donor Cells or Sitagliptin-Treated Recipients
on Engraftment of Mouse BM Cells in a Competitive Assay

We have previously reported that Diprotin A-treated mouse donor cell infusion into non-

sitagliptin-treated irradiated recipients, and non-treated donor mouse BM infusion into

sitagliptin-treated irradiated recipient mice both result in enhanced HSPC engraftment in a

competitive stem cell engrafting model [10,13]. However, comparison of the two treatment

modalities “head to head” has not previously been reported. We therefore transplanted

2×105 C57Bl/6 (CD45.2+) BM cells treated with Diprotin A (5mM/106 cells) for 1 hour at

room temperature admixed with untreated B6.BoyJ competitor (CD45.2+) BM cells donor

cells at a 1:1 ratio prior to i.v. injection into untreated lethally-irradiated (950cGy gamma

radiation) dual CD45.2+/CD45.1+ (F1) recipient mice, or 2×105 C57Bl/6 (CD45.2+) BM

cells treated with control diluent admixed with untreated B6.BoyJ competitor (CD45.2+)

BM cells donor cells at a 1:1 ratio into F1 mice that were orally gavaged with control diluent

or 200μg sitagliptin/mouse 4 hours after radiation (Figure 1). Pre-treatment of donor cells

with Diprotin A or pre-treatment of recipients with sitagliptin significantly enhanced

engraftment, but there was no statistically significant difference (p>0.05) between

engraftment of Diprotin A pretreated donor cells into control recipients and control treated

donor cells into sitagliptin-treated recipients.

Influence of Sitagliptin Treated Recipient Mice on Short-Term Engraftment of BM in a Non-
Competitive Assay

Sitagliptin treatment of recipient mice has been shown to enhance engraftment of donor

mouse HSC in a competitive assay [13], however, competitive transplant assays do not

represent the scenario of limiting HSPC number. To mimic the condition of low HSC

number, we chose a low donor cell number (105 cells) that bordered on being just sufficient

to repopulate hematopoiesis and allow survival of the irradiated mice. As shown in Figure 2

for short-term engraftment (1 month), survival and donor BM cell engraftment occurred in
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both test groups, but significantly higher engraftment was observed when the cells were

injected into lethally-irradiated mice that had been treated with sitagliptin 4 hours after the

dose of radiation, and 16 hours prior to the donor cell infusion.

Effects of Treating Donor Cells with Diprotin A or dmPGE2, Alone and in Combination, on
Engraftment, and Effects of Infusing dmPGE2 treated Donor Cells into Sitagliptin Treated
Recipients

In order to determine how pretreatment of donor cells with Diprotin A compared to cells

treated with dmPGE2, donor BM cells were either pulse exposed to Diprotin A, dmPGE2 or

both, prior to being washed and infused i.v. into control recipient mice not pre-exposed to

sitagliptin in a head –to –head competitive transplant assay in F1 hybrid mice (Figure 3).

Treatment of donor cells with either Diprotin A or dmPGE2 significantly enhanced

engraftment at all time points compared to control treated donor cells. Combined treatment

of donor cells with both Diprotin A and dmPGE2 significantly enhanced engraftment at all

time points compared to control treated donor cells but did not result in enhanced

engraftment compared to cells pretreated with either Diprotin A or dmPGE2 alone. The level

of enhanced engraftment by Diprotin A or dmPGE2 alone or in combination was equivalent

to that seen when control treated cells were infused into sitagliptin pretreated recipients

(Figure 3). Pulse treatment of donor cells with dmPGE2 and infusion of these cells into

sitagliptin-pretreated recipients resulted in the highest levels of engraftment at months 2, 4, 6

and 9 with statistically significant higher chimerism noted between combined ex vivo

dmPGE2 and in vivo sitagliptin treatment compared to dmPGE2 or sitagliptin alone.

DISCUSSION

Our results confirm the enhanced engraftment of mouse BM cells by pretreatment with

either Diprotin A [10] or dmPGE2 [26,27] ex vivo, and for recipient mice treated with

sitagliptin in vivo [13]. In addition, we demonstrate under conditions of head-to-head

comparison in our experimental transplant system, that each treatment modality results in

approximately equal enhanced engrafting capacity, and that pretreating the donor cells with

a combination of Diprotin A and dmPGE2 ex vivo does not further enhance the engrafting

capability of the donor mouse BM cells beyond that of pretreating with either agent alone.

This lack of enhanced engraftment capacity with combined pre-treatment of donor cells with

Diprotin A and dmPGE2 may reflect the fact that both treatments are known to enhance the

homing capabilities of donor HSC to the BM of the recipient mice through effects on the

CXCR4/SDF-1 axis [10,27]. It is of course possible that further modification to the

methodology we used may increase the effectiveness of each procedure alone, or the

combined effects of these procedures. However, most importantly, we found that pretreating

donor cells with dmPGE2 ex vivo and injecting these cells into sitagliptin treated recipients

results in the highest levels of HSPC engraftment, suggesting that in this treatment modality,

in vivo inhibition of DPP4 may provide additional benefit outside the CXCR4/SDF-1 axis,

perhaps by preventing N-terminal degradation of hematopoietic cytokines by DPP4 and

preserving their biological activity, as we recently described [13].
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In our studies where donor mouse BM cells were pulsed with Diprotin A and infused into

mice in a setting of competitive HSC repopulation, it is clear that the Diprotin A treated cells

had an engrafting advantage. However, in such a competitive HSC repopulating situation it

is perhaps less clear why the C57Bl/6 donor cell population, but not the B6.BoyJ

competitors, would show enhancement when the recipients, but not the donor cells were

treated to decrease DPP4 enzymatic activity. The most likely explanation for this outcome is

that C57Bl/6 BM cells are better competitors than B6.BoyJ BM cells, a finding previously

reported by others [29] and that the C57Bl/6 BM cells having a competitive advantage

anyway are more responsive to the effects of in vivo DPP4 inhibition by sitagliptin. In fact,

giving donor CB cells an advantage for engraftment in context of clinical HCT by first

pretreating these cells with dmPGE2 might allow them to be more potent engrafting cells

when placed into an in vivo environment in which DPP4 enzymatic activity was decreased

by pretreating the recipient with sitagliptin, perhaps mimicking the situation of the most

competitive cells benefiting from a reduced DPP4 enzymatic environment in vivo.

Finding means to enhance the engrafting capability of limiting numbers of donor cells for

HCT is of high practical importance. This is especially so for human CB HCT, and for

human HCT when numbers of BM cells are limiting, for example in cases when BM is

collected from a young child for use in an older higher weight sibling. Hence, our finding in

mice of the combination treatment modality of short-term ex vivo exposure to dmPGE2 ex

vivo and their administration to sitagliptin-treated recipient mice is of interest, since clinical

trials using dmPGE2 treated cells in context of a double CB HCT [28], and sitagliptin-

treated recipients in context of a single CB HCT [14] have been separately reported. The

studies of sitagliptin treated recipients with leukemia and lymphoma receiving a single CB

unit HCT were found to be safe and showed some modest improvement in time to neutrophil

engraftment compared to reported comparable data taking into consideration the disease

status of recipients, the HLA-disparity between donor CB cells and recipients, and the

numbers of donor CB cells transplanted [14]. However, it was not clear that the

improvement in time to engraftment was statistically significant. It was learned in this study

that the administration of sitagliptin to the recipients (1X/day for 4 days) was suboptimal

with regards to decreasing the enzymatic activity of DPP4 compared to that obtained in

reports of sitagliptin treatment of normal healthy volunteers [14,15]. This discrepancy in

amount of reduction in DPP4 enzymatic activity noted in our study in recipients with

leukemia and the intensive conditioning regimen used compared to that of normal healthy

volunteers may reflect the possibility that the disease status or conditioning of the patients

prior to CB HCT elicited release of high levels of DPP4 that were not able to be effectively

down modulated long enough by giving the patients sitagliptin 1X/day. Current studies are

addressing this issue by giving the conditioned patients sitagliptin twice a day for 4 days.

The clinical report for dmPGE2-treated donor CB cell engraftment in context of a double CB

HCT demonstrated a significant decrease in time to neutrophil engraftment for the dmPGE2-

treated CB unit [28]. This encouraging decrease in time to engraftment, however, will need

to be substantially enhanced, and eventually will have to be shown in context of a single CB

HCT to have a major impact in reducing the costs of CB HCT. Ultimately, to reduce the

overall costs of CB HCT, simple procedures to accelerate time to neutrophil, platelet, and

immune cell recovery will have to be adapted, and the use of dmPGE2-treated donor cells
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engrafting sitagliptin-treated recipients may be one way to accomplish this relevant end-

point.

CONCLUSIONS

In summary, our studies demonstrated that pre-treating donor mouse BM cells with dmPGE2

and infusing them into sitagliptin treated irradiated recipient mice allowed for enhanced

engraftment of donor cells compared to that shown for each treatment alone. Thus, it seems

reasonable to propose that one might be able to more effectively accelerate time to donor

cell engraftment, especially in the context of single CB HCT, if the CB cells were first

exposed to pre-treatment with dmPGE2 and these cells then infused into conditioned patients

treated with sitagliptin.
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Figure 1.
Comparison of DPP4 inhibitor-treated donor mouse BM cells and DPP4 inhibitor treated

recipient mice on engraftment in the setting of competitive repopulation using congenic

mice. Mouse C57Bl/6 (CD45.2+) BM cells were treated with Diprotin A (5mM/106 cells) or

with control diluent for 1 hour at room temperature prior to washing the cells 2X and mixing

the donor cells at a 1:1 ratio with untreated B6.BoyJ competitor (CD45.2+) BM cells prior to

infusing the donor and competitor cells i.v. at 2×105 cells each into lethally-irradiated

(950cGy gamma radiation) dual CD45.2+/CD45.1+ (F1) recipient mice. Cells were infused

24 hours later into F1 mice that were orally gavaged with control diluent or with 200 μg

sitagliptin/mouse 4 hours after radiation. Results are shown as mean ±1SEM for 5 mice per

group each assayed individually. a, significantly different from controls (control treated

donor cells into non-sitagliptin treated recipients), p<0.001.
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Figure 2.
Influence of oral treatment of lethally-irradiated mouse recipients on engraftment of mouse

BM cells in a short-term non-competitive assay. One hundred thousand B6.BoyJ (CD45.1+)

donor cells were injected i.v. into C57Bl/6 (CD45.2+) recipient mice 24 hours after 950cGy

radiation. The recipient mice were treated 4 hours after radiation with either oral

administered control diluent or 200 μg sitagliptin. Results are shown as mean percent

engraftment ±1SEM for 5 mice/group at one month post donor BM cell infusion with all

mice surviving. a, significantly different from control treated recipients, p<0.001.
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Figure 3.
Comparative donor mouse BM cell engraftment into lethally-irradiated mice in the setting of

competition with congenic competitor cells. Unseparated donor C57Bl/6 (CD45.2+) cells

were treated with control diluent or with either Diprotin A (5mM/106 cells) for 1 hour at

room temperature), dmPGE2 (1μM/106 cells for 1 hour at 4°C), or with Diprotin A and then

with dmPGE2, prior to washing cells 2X and infusing cells at a 1:1 ratio with B6.BoyJ

(CD45.1+) competitor cells (2.5×105 cells each) 24 hours later into (dual CD45.2+/CD45.1+

F1) recipient mice that had been lethally irradiated with 950cGy gamma radiation) and 4

hours after radiation orally gavaged one time with either control diluent or 200 μg

sitagliptin. Results are shown as mean ± 1SEM for 5 mice in group each assayed

individually. * = all points p<0.05 versus vehicle control; † = p<0.05 versus all other

treatment groups; as determined by ANOVA with Tukey post-hoc test.
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