1,298 research outputs found

    Stellar population analysis of MaNGA early-type galaxies: IMF dependence and systematic effects

    Full text link
    We study systematics associated with estimating simple stellar population (SSP) parameters -- age, metallicity [M/H], α\alpha-enhancement [α\alpha/Fe] and IMF shape -- and associated M∗/LM_*/L gradients, of elliptical slow rotators (E-SRs), fast rotators (E-FRs) and S0s from stacked spectra of galaxies in the MaNGA survey. These systematics arise from (i) how one normalizes the spectra when stacking; (ii) having to subtract emission before estimating absorption line strengths; (iii) the decision to fit the whole spectrum or just a few absorption lines; (iv) SSP model differences (e.g. isochrones, enrichment, IMF). The MILES+Padova SSP models, fit to the Hβ_\beta, ⟨\langleFe⟩\rangle, TiO2SDSS_{\rm 2SDSS} and [MgFe] Lick indices in the stacks, indicate that out to the half-light radius ReR_e: (a) ages are younger and [α\alpha/Fe] values are lower in the central regions but the opposite is true of [M/H]; (b) the IMF is more bottom-heavy in the center, but is close to Kroupa beyond about Re/2R_e/2; (c) this makes M∗/LM_*/L about 2×2\times larger in the central regions than beyond Re/2R_e/2. While the models of Conroy et al. (2018) return similar [M/H] and [α\alpha/Fe] profiles, the age and (hence) M∗/LM_*/L profiles can differ significantly even for solar abundances and a Kroupa IMF; different responses to non-solar abundances and IMF parametrization further compound these differences. There are clear (model independent) differences between E-SRs, E-FRs and S0s: younger ages and less enhanced [α\alpha/Fe] values suggest that E-FRs and S0s are not SSPs, but relaxing this assumption is unlikely to change their inferred M∗/LM_*/L gradients significantly.Comment: 22 pages, 23 figures, accepted for publication in MNRA

    SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Get PDF
    We present our study on the spatially resolved H_alpha and M_star relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density (Sigma_SFR), derived based on the H_alpha emissions, is strongly correlated with the M_star surface density (Sigma_star) on kpc scales for star- forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that about 20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions, named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte

    Expression of the neuroprotective slow Wallerian degeneration (WldS) gene in non-neuronal tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The slow Wallerian Degeneration (<it>Wld</it><sup><it>S</it></sup>) gene specifically protects axonal and synaptic compartments of neurons from a wide variety of degeneration-inducing stimuli, including; traumatic injury, Parkinson's disease, demyelinating neuropathies, some forms of motor neuron disease and global cerebral ischemia. The <it>Wld</it><sup><it>S </it></sup>gene encodes a novel Ube4b-Nmnat1 chimeric protein (Wld<sup>S </sup>protein) that is responsible for conferring the neuroprotective phenotype. How the chimeric Wld<sup>S </sup>protein confers neuroprotection remains controversial, but several studies have shown that expression in neurons <it>in vivo </it>and <it>in vitro </it>modifies key cellular pathways, including; NAD biosynthesis, ubiquitination, the mitochondrial proteome, cell cycle status and cell stress. Whether similar changes are induced in non-neuronal tissue and organs at a basal level <it>in vivo </it>remains to be determined. This may be of particular importance for the development and application of neuroprotective therapeutic strategies based around <it>Wld</it><sup><it>S</it></sup>-mediated pathways designed for use in human patients.</p> <p>Results</p> <p>We have undertaken a detailed analysis of non-neuronal <it>Wld</it><sup><it>S </it></sup>expression in <it>Wld</it><sup><it>S </it></sup>mice, alongside gravimetric and histological analyses, to examine the influence of <it>Wld</it><sup><it>S </it></sup>expression in non-neuronal tissues. We show that expression of <it>Wld</it><sup><it>S </it></sup>RNA and protein are not restricted to neuronal tissue, but that the relative RNA and protein expression levels rarely correlate in these non-neuronal tissues. We show that <it>Wld</it><sup><it>S </it></sup>mice have normal body weight and growth characteristics as well as gravimetrically and histologically normal organs, regardless of Wld<sup>S </sup>protein levels. Finally, we demonstrate that previously reported <it>Wld</it><sup><it>S</it></sup>-induced changes in cell cycle and cell stress status are neuronal-specific, not recapitulated in non-neuronal tissues at a basal level.</p> <p>Conclusions</p> <p>We conclude that expression of Wld<sup>S </sup>protein has no adverse effects on non-neuronal tissue at a basal level <it>in vivo</it>, supporting the possibility of its safe use in future therapeutic strategies targeting axonal and/or synaptic compartments in patients with neurodegenerative disease. Future experiments determining whether Wld<sup>S </sup>protein can modify responses to injury in non-neuronal tissue are now required.</p

    Stochastic bias of colour-selected BAO tracers by joint clustering-weak lensing analysis

    Full text link
    The baryon acoustic oscillation (BAO) feature in the two-point correlation function of galaxies supplies a standard ruler to probe the expansion history of the Universe. We study here several galaxy selection schemes, aiming at building an emission-line galaxy (ELG) sample in the redshift range 0.6<z<1.70.6<z<1.7, that would be suitable for future BAO studies, providing a highly biased galaxy sample. We analyse the angular galaxy clustering of galaxy selections at the redshifts 0.5, 0.7, 0.8, 1 and 1.2 and we combine this analysis with a halo occupation distribution (HOD) model to derive the properties of the haloes these galaxies inhabit, in particular the galaxy bias on large scales. We also perform a weak lensing analysis (aperture statistics) to extract the galaxy bias and the cross-correlation coefficient and compare to the HOD prediction. We apply this analysis on a data set composed of the photometry of the deep co-addition on Sloan Digital Sky Survey (SDSS) Stripe 82 (225 deg2^2), of Canda-France-Hawai Telescope/Stripe 82 deep \emph{i}-band weak lensing survey and of the {\it Wide-Field Infrared Survey Explorer}infrared photometric band W1. The analysis on the SDSS-III/constant mass galaxies selection at z=0.5z=0.5 is in agreement with previous studies on the tracer, moreover we measure its cross-correlation coefficient r=1.16±0.35r=1.16\pm0.35. For the higher redshift bins, we confirm the trends that the brightest galaxy populations selected are strongly biased (b>1.5b>1.5), but we are limited by current data sets depth to derive precise values of the galaxy bias. A survey using such tracers of the mass field will guarantee a high significance detection of the BAO.Comment: 17 pages, 15 figures, submitted to MNRA

    From Big Bang to Asymptotic de Sitter: Complete Cosmologies in a Quantum Gravity Framework

    Full text link
    Using the Einstein-Hilbert approximation of asymptotically safe quantum gravity we present a consistent renormalization group based framework for the inclusion of quantum gravitational effects into the cosmological field equations. Relating the renormalization group scale to cosmological time via a dynamical cutoff identification this framework applies to all stages of the cosmological evolution. The very early universe is found to contain a period of ``oscillatory inflation'' with an infinite sequence of time intervals during which the expansion alternates between acceleration and deceleration. For asymptotically late times we identify a mechanism which prevents the universe from leaving the domain of validity of the Einstein-Hilbert approximation and obtain a classical de Sitter era.Comment: 47 pages, 17 figure
    • …
    corecore