1,644 research outputs found

    Blogging in the physics classroom: A research-based approach to shaping students' attitudes towards physics

    Full text link
    Even though there has been a tremendous amount of research done in how to help students learn physics, students are still coming away missing a crucial piece of the puzzle: why bother with physics? Students learn fundamental laws and how to calculate, but come out of a general physics course without a deep understanding of how physics has transformed the world around them. In other words, they get the "how" but not the "why". Studies have shown that students leave introductory physics courses almost universally with decreased expectations and with a more negative attitude. This paper will detail an experiment to address this problem: a course weblog or "blog" which discusses real-world applications of physics and engages students in discussion and thinking outside of class. Specifically, students' attitudes towards the value of physics and its applicability to the real-world were probed using a 26-question Likert scale survey over the course of four semesters in an introductory physics course at a comprehensive Jesuit university. We found that students who did not participate in the blog study generally exhibited a deterioration in attitude towards physics as seen previously. However, students who read, commented, and were involved with the blog maintained their initially positive attitudes towards physics. Student response to the blog was overwhelmingly positive, with students claiming that the blog made the things we studied in the classroom come alive for them and seem much more relevant.Comment: 20 pages, 6 figure

    SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Get PDF
    We present our study on the spatially resolved H_alpha and M_star relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density (Sigma_SFR), derived based on the H_alpha emissions, is strongly correlated with the M_star surface density (Sigma_star) on kpc scales for star- forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that about 20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions, named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte

    Supersymmetry in quantum mechanics: An extended view

    Get PDF
    The concept of supersymmetry in a quantum mechanical system is extended, permitting the recognition of many more supersymmetric systems, including very familiar ones such as the free particle. Its spectrum is shown to be supersymmetric, with space-time symmetries used for the explicit construction. No fermionic or Grassmann variables need to be invoked. Our construction extends supersymmetry to continuous spectra. Most notably, while the free particle in one dimension has generally been regarded as having a doubly degenerate continuum throughout, the construction clarifies taht there is a single zero energy state at the base of the spectrum.Comment: 4 pages, 4 figure

    Using internet search queries for infectious disease surveillance: screening diseases for suitability

    Get PDF
    Background: Internet-based surveillance systems provide a novel approach to monitoring infectious diseases. Surveillance systems built on internet data are economically, logistically and epidemiologically appealing and have shown significant promise. The potential for these systems has increased with increased internet availability and shifts in health-related information seeking behaviour. This approach to monitoring infectious diseases has, however, only been applied to single or small groups of select diseases. This study aims to systematically investigate the potential for developing surveillance and early warning systems using internet search data, for a wide range of infectious diseases. Methods: Official notifications for 64 infectious diseases in Australia were downloaded and correlated with frequencies for 164 internet search terms for the period 2009–13 using Spearman’s rank correlations. Time series cross correlations were performed to assess the potential for search terms to be used in construction of early warning systems. Results: Notifications for 17 infectious diseases (26.6%) were found to be significantly correlated with a selected search term. The use of internet metrics as a means of surveillance has not previously been described for 12 (70.6%) of these diseases. The majority of diseases identified were vaccine-preventable, vector-borne or sexually transmissible; cross correlations, however, indicated that vector-borne and vaccine preventable diseases are best suited for development of early warning systems. Conclusions: The findings of this study suggest that internet-based surveillance systems have broader applicability to monitoring infectious diseases than has previously been recognised. Furthermore, internet-based surveillance systems have a potential role in forecasting emerging infectious disease events, especially for vaccine-preventable and vector-borne diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0690-1) contains supplementary material, which is available to authorized users

    A solution for galactic disks with Yukawian gravitational potential

    Get PDF
    We present a new solution for the rotation curves of galactic disks with gravitational potential of the Yukawa type. We follow the technique employed by Toomre in 1963 in the study of galactic disks in the Newtonian theory. This new solution allows an easy comparison between the Newtonian solution and the Yukawian one. Therefore, constraints on the parameters of theories of gravitation can be imposed, which in the weak field limit reduce to Yukawian potentials. We then apply our formulae to the study of rotation curves for a zero-thickness exponential disk and compare it with the Newtonian case studied by Freeman in 1970. As an application of the mathematical tool developed here, we show that in any theory of gravity with a massive graviton (this means a gravitational potential of the Yukawa type), a strong limit can be imposed on the mass (m_g) of this particle. For example, in order to obtain a galactic disk with a scale length of b ~ 10 kpc, we should have a massive graviton of m_g << 10^{-59} g. This result is much more restrictive than those inferred from solar system observations.Comment: 7 pages; 1 eps figure; to appear in General Relativity and Gravitatio

    SSDSS IV MaNGA - Properties of AGN host galaxies

    Full text link
    We present here the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of about 2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. For a given morphology AGN hosts are, in average, more massive, more compact, more central peaked and rather pressurethan rotational-supported systems. We confirm previous results indicating that AGN hosts are located in the intermediate/transition region between star-forming and non-star-forming galaxies (i.e., the so-called green valley), both in the ColorMagnitude and the star formation main sequence diagrams. Taking into account their relative distribution in terms of the stellar metallicity and oxygen gas abundance and a rough estimation of their molecular gas content, we consider that these galaxies are in the process of halting/quenching the star formation, in an actual transition between both groups. The analysis of the radial distributions of the starformation rate, specific star-formation rate, and molecular gas density shows that the quenching happens from inside-out involving both a decrease of the efficiency of the star formation and a deficit of molecular gas. All the intermediate data-products used to derive the results of our analysis are distributed in a database including the spatial distribution and average properties of the stellar populations and ionized gas, published as a Sloan Digital Sky Survey Value Added Catalog being part of the 14th Data Release: http://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog/Comment: 48 pages, 14 figures, in press in RMxA

    From Big Bang to Asymptotic de Sitter: Complete Cosmologies in a Quantum Gravity Framework

    Full text link
    Using the Einstein-Hilbert approximation of asymptotically safe quantum gravity we present a consistent renormalization group based framework for the inclusion of quantum gravitational effects into the cosmological field equations. Relating the renormalization group scale to cosmological time via a dynamical cutoff identification this framework applies to all stages of the cosmological evolution. The very early universe is found to contain a period of ``oscillatory inflation'' with an infinite sequence of time intervals during which the expansion alternates between acceleration and deceleration. For asymptotically late times we identify a mechanism which prevents the universe from leaving the domain of validity of the Einstein-Hilbert approximation and obtain a classical de Sitter era.Comment: 47 pages, 17 figure

    Preventing Pandemics via International Development: A Systems Approach

    Get PDF
    Tiffany Bogich and colleagues find that breakdown or absence of public health infrastructure is most often the driver in pandemic outbreaks, whose prevention requires mainstream development funding rather than emergency funding

    Matrix theory of gravitation

    Full text link
    A new classical theory of gravitation within the framework of general relativity is presented. It is based on a matrix formulation of four-dimensional Riemann-spaces and uses no artificial fields or adjustable parameters. The geometrical stress-energy tensor is derived from a matrix-trace Lagrangian, which is not equivalent to the curvature scalar R. To enable a direct comparison with the Einstein-theory a tetrad formalism is utilized, which shows similarities to teleparallel gravitation theories, but uses complex tetrads. Matrix theory might solve a 27-year-old, fundamental problem of those theories (sec. 4.1). For the standard test cases (PPN scheme, Schwarzschild-solution) no differences to the Einstein-theory are found. However, the matrix theory exhibits novel, interesting vacuum solutions.Comment: 24 page

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page
    corecore