1,457 research outputs found
Blogging in the physics classroom: A research-based approach to shaping students' attitudes towards physics
Even though there has been a tremendous amount of research done in how to
help students learn physics, students are still coming away missing a crucial
piece of the puzzle: why bother with physics? Students learn fundamental laws
and how to calculate, but come out of a general physics course without a deep
understanding of how physics has transformed the world around them. In other
words, they get the "how" but not the "why". Studies have shown that students
leave introductory physics courses almost universally with decreased
expectations and with a more negative attitude. This paper will detail an
experiment to address this problem: a course weblog or "blog" which discusses
real-world applications of physics and engages students in discussion and
thinking outside of class. Specifically, students' attitudes towards the value
of physics and its applicability to the real-world were probed using a
26-question Likert scale survey over the course of four semesters in an
introductory physics course at a comprehensive Jesuit university. We found that
students who did not participate in the blog study generally exhibited a
deterioration in attitude towards physics as seen previously. However, students
who read, commented, and were involved with the blog maintained their initially
positive attitudes towards physics. Student response to the blog was
overwhelmingly positive, with students claiming that the blog made the things
we studied in the classroom come alive for them and seem much more relevant.Comment: 20 pages, 6 figure
The Cost of Simplifying Air Travel When Modeling Disease Spread
BACKGROUND: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. METHODOLOGY/PRINCIPAL FINDINGS: Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. CONCLUSIONS/SIGNIFICANCE: If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed
SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence
We present our study on the spatially resolved H_alpha and M_star relation
for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We
show that the star formation rate surface density (Sigma_SFR), derived based on
the H_alpha emissions, is strongly correlated with the M_star surface density
(Sigma_star) on kpc scales for star- forming galaxies and can be directly
connected to the global star-forming sequence. This suggests that the global
main sequence may be a consequence of a more fundamental relation on small
scales. On the other hand, our result suggests that about 20% of quiescent
galaxies in our sample still have star formation activities in the outer region
with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a
tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions,
named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is
consistent with the scenario that LI(N)ER emissions are primarily powered by
the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte
Measuring the impact of health policies using Internet search patterns: the case of abortion
<p>Abstract</p> <p>Background</p> <p>Internet search patterns have emerged as a novel data source for monitoring infectious disease trends. We propose that these data can also be used more broadly to study the impact of health policies across different regions in a more efficient and timely manner.</p> <p>Methods</p> <p>As a test use case, we studied the relationships between abortion-related search volume, local abortion rates, and local abortion policies available for study.</p> <p>Results</p> <p>Our initial integrative analysis found that, both in the US and internationally, the volume of Internet searches for abortion is inversely proportional to local abortion rates and directly proportional to local restrictions on abortion.</p> <p>Conclusion</p> <p>These findings are consistent with published evidence that local restrictions on abortion lead individuals to seek abortion services outside of their area. Further validation of these methods has the potential to produce a timely, complementary data source for studying the effects of health policies.</p
Supersymmetry in quantum mechanics: An extended view
The concept of supersymmetry in a quantum mechanical system is extended,
permitting the recognition of many more supersymmetric systems, including very
familiar ones such as the free particle. Its spectrum is shown to be
supersymmetric, with space-time symmetries used for the explicit construction.
No fermionic or Grassmann variables need to be invoked. Our construction
extends supersymmetry to continuous spectra. Most notably, while the free
particle in one dimension has generally been regarded as having a doubly
degenerate continuum throughout, the construction clarifies taht there is a
single zero energy state at the base of the spectrum.Comment: 4 pages, 4 figure
Using internet search queries for infectious disease surveillance: screening diseases for suitability
Background: Internet-based surveillance systems provide a novel approach to monitoring infectious diseases. Surveillance systems built on internet data are economically, logistically and epidemiologically appealing and have shown significant promise. The potential for these systems has increased with increased internet availability and shifts in health-related information seeking behaviour. This approach to monitoring infectious diseases has, however, only been applied to single or small groups of select diseases. This study aims to systematically investigate the potential for developing surveillance and early warning systems using internet search data, for a wide range of infectious diseases. Methods: Official notifications for 64 infectious diseases in Australia were downloaded and correlated with frequencies for 164 internet search terms for the period 2009–13 using Spearman’s rank correlations. Time series cross correlations were performed to assess the potential for search terms to be used in construction of early warning systems. Results: Notifications for 17 infectious diseases (26.6%) were found to be significantly correlated with a selected search term. The use of internet metrics as a means of surveillance has not previously been described for 12 (70.6%) of these diseases. The majority of diseases identified were vaccine-preventable, vector-borne or sexually transmissible; cross correlations, however, indicated that vector-borne and vaccine preventable diseases are best suited for development of early warning systems. Conclusions: The findings of this study suggest that internet-based surveillance systems have broader applicability to monitoring infectious diseases than has previously been recognised. Furthermore, internet-based surveillance systems have a potential role in forecasting emerging infectious disease events, especially for vaccine-preventable and vector-borne diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0690-1) contains supplementary material, which is available to authorized users
SSDSS IV MaNGA - Properties of AGN host galaxies
We present here the characterization of the main properties of a sample of 98
AGN host galaxies, both type-II and type-I, in comparison with those of about
2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts
are morphologically early-type or early-spirals. For a given morphology AGN
hosts are, in average, more massive, more compact, more central peaked and
rather pressurethan rotational-supported systems. We confirm previous results
indicating that AGN hosts are located in the intermediate/transition region
between star-forming and non-star-forming galaxies (i.e., the so-called green
valley), both in the ColorMagnitude and the star formation main sequence
diagrams. Taking into account their relative distribution in terms of the
stellar metallicity and oxygen gas abundance and a rough estimation of their
molecular gas content, we consider that these galaxies are in the process of
halting/quenching the star formation, in an actual transition between both
groups. The analysis of the radial distributions of the starformation rate,
specific star-formation rate, and molecular gas density shows that the
quenching happens from inside-out involving both a decrease of the efficiency
of the star formation and a deficit of molecular gas. All the intermediate
data-products used to derive the results of our analysis are distributed in a
database including the spatial distribution and average properties of the
stellar populations and ionized gas, published as a Sloan Digital Sky Survey
Value Added Catalog being part of the 14th Data Release:
http://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog/Comment: 48 pages, 14 figures, in press in RMxA
A solution for galactic disks with Yukawian gravitational potential
We present a new solution for the rotation curves of galactic disks with
gravitational potential of the Yukawa type. We follow the technique employed by
Toomre in 1963 in the study of galactic disks in the Newtonian theory. This new
solution allows an easy comparison between the Newtonian solution and the
Yukawian one. Therefore, constraints on the parameters of theories of
gravitation can be imposed, which in the weak field limit reduce to Yukawian
potentials. We then apply our formulae to the study of rotation curves for a
zero-thickness exponential disk and compare it with the Newtonian case studied
by Freeman in 1970. As an application of the mathematical tool developed here,
we show that in any theory of gravity with a massive graviton (this means a
gravitational potential of the Yukawa type), a strong limit can be imposed on
the mass (m_g) of this particle. For example, in order to obtain a galactic
disk with a scale length of b ~ 10 kpc, we should have a massive graviton of
m_g << 10^{-59} g. This result is much more restrictive than those inferred
from solar system observations.Comment: 7 pages; 1 eps figure; to appear in General Relativity and
Gravitatio
The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity
We discuss various basic conceptual issues related to coarse graining flows
in quantum gravity. In particular the requirement of background independence is
shown to lead to renormalization group (RG) flows which are significantly
different from their analogs on a rigid background spacetime. The importance of
these findings for the asymptotic safety approach to Quantum Einstein Gravity
(QEG) is demonstrated in a simplified setting where only the conformal factor
is quantized. We identify background independence as a (the ?) key prerequisite
for the existence of a non-Gaussian RG fixed point and the renormalizability of
QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum
Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to
appear in General Relativity and Gravitatio
- …