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Abstract

Background: Internet-based surveillance systems provide a novel approach to monitoring infectious diseases.
Surveillance systems built on internet data are economically, logistically and epidemiologically appealing and have
shown significant promise. The potential for these systems has increased with increased internet availability and
shifts in health-related information seeking behaviour. This approach to monitoring infectious diseases has, however,
only been applied to single or small groups of select diseases. This study aims to systematically investigate the
potential for developing surveillance and early warning systems using internet search data, for a wide range of
infectious diseases.

Methods: Official notifications for 64 infectious diseases in Australia were downloaded and correlated with
frequencies for 164 internet search terms for the period 2009–13 using Spearman’s rank correlations. Time series
cross correlations were performed to assess the potential for search terms to be used in construction of early
warning systems.

Results: Notifications for 17 infectious diseases (26.6%) were found to be significantly correlated with a selected
search term. The use of internet metrics as a means of surveillance has not previously been described for 12 (70.6%)
of these diseases. The majority of diseases identified were vaccine-preventable, vector-borne or sexually transmissible;
cross correlations, however, indicated that vector-borne and vaccine preventable diseases are best suited for
development of early warning systems.

Conclusions: The findings of this study suggest that internet-based surveillance systems have broader applicability
to monitoring infectious diseases than has previously been recognised. Furthermore, internet-based surveillance
systems have a potential role in forecasting emerging infectious disease events, especially for vaccine-preventable
and vector-borne diseases.
Background
Prudent detection is a cornerstone in the control and
prevention of infectious diseases. Traditional infectious
disease surveillance systems are typically characterised
by a bottom-up process of data collection and informa-
tion flow; these systems require a patient to recognise
illness and seek treatment and a physician or laboratory
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to diagnose the infection and notify the relevant author-
ity [1,2]. For emerging infectious disease events, this
process is reported to take, on average, 15 days from on-
set to detection and a further 12–24 hours for the World
Health Organization to be notified [3]. The development
and implementation of more efficient systems for gath-
ering intelligence on infectious diseases has the potential
to reduce the impact of disease events. Internet-based
surveillance systems are one such system [4].
Internet-based surveillance systems produce estimates

of disease incidence through analysis of various digital
data-sources. Targeted sources include internet-search
metrics, online news stories, social network data and blog/
tral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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microblog data [4]. Currently, the most promising ap-
proach appears to be those based upon monitoring of
internet search behaviour. This approach works on the
premise that people will actively seek information on dis-
eases they develop and that estimates of disease activity
with the community may be developed by monitoring the
frequency of related internet searches. Through targeting
people earlier in the disease process, internet-based
systems are able to access a larger fraction of the com-
munity and produce more timely information. Further-
more, internet-based surveillance systems are intuitive
and adaptable, cheap to run and maintain (once estab-
lished), do not require a formal public health network
and have the capacity to be automated and operate in
near-real time. Despite these advantages, internet-based
surveillance systems have a number of significant short-
comings and must not be considered an alternative to
traditional surveillance approaches [5]. Firstly, as these
systems crowd-source data, resolution will be contin-
gent on the size of the population serviced and may be
further limited by national communications infrastructure
availability and distribution [6]. Secondly, as internet-
based surveillance systems are limited to people who use
the internet to source health information, there is the
potential that estimates produced by these systems may
not accurately reflect the entire community [7]. Finally, as
internet-based surveillance systems essentially rely upon
self-reporting, bias may be introduced through differences
in internet usage between sectors of the community (the
elderly, for example, may not use the internet as a source
of health information, despite being a high-risk group for
many infectious diseases) and/or through media driven
interest in emerging disease events [4].
Infectious diseases surveillance systems have been de-

veloped using internet search metrics to estimate inci-
dence of influenza (Google Flu Trends) [8] and dengue
(Google Dengue Trends) [9]. Currently, operational sys-
tems that utilise this approach are limited, however, stud-
ies of the potential for internet-based surveillance have
been conducted for a range of other infectious diseases,
including: acute respiratory illness [7], AIDS [10], chicken-
pox [11,12], cryptosporidiosis [13], dysentery [10], gastro-
enteritis [11], Hepatitis [14], listeriosis [15], Lyme disease
[16], methicillin-resistant Staphylococcus aureus [17], nor-
ovirus [18], respiratory syncytial virus [6], rotavirus [19],
scarlet fever (Streptococcus pyogenes) [10,20], Salmonella
[21], tuberculosis [10,22] and West Nile virus [6]. Previous
studies have focused on single diseases, or a small number
of diseases, and the justification of the focus on a particu-
lar disease has been specific to each study. The published
results have largely been promising; however, to date there
has been no systematic, generalizable analysis to identify-
ing diseases that are suited to monitoring through the
analysis of internet-search metrics.
The underpinning goal of this study was to provide
direction for future approaches to developing digital sur-
veillance systems; such as the development of predictive
models and/or integrative surveillance models that draw
upon multiple traditional and digital data source to create
estimates of disease within the community. This study,
however, did not aim to develop actionable surveillance
systems, produce predictive models of infectious disease
based on internet-based data or to identify the best search
terms for use in these models. Rather, this study aimed to
determine which diseases have most promise for monitor-
ing by surveillance systems built on internet search met-
rics; this was achieved by assessing the level of correlation
between a wide range of infectious diseases and internet
search term metrics. Finally, this study aims to identify
diseases for which internet-based data could be used to
create early warning systems.

Methods
Infectious disease surveillance data
Surveillance data on notifiable infectious diseases were col-
lected from the National Notifiable Disease Surveillance
System (NNDSS) which is maintained by the Australia
Government Department of Health (DoH) [23]. Monthly
notifications (case numbers) aggregated at state/terri-
tory and national level, were downloaded for the period
of January 2004 to September 2013. A full list of notifi-
able diseases in Australia and case definitions can be
accessed through the DoH webpage [24]. Sixty-four dis-
eases are monitored and these are categorised in the
NNDSS as belonging to one of eight groups: blood-
borne diseases; gastrointestinal diseases; other bacterial
diseases; quarantinable diseases; sexually transmissible
infections; vector-borne diseases; vaccine preventable
diseases; and zoonoses. For the purpose of consistency,
we have reported diseases according to these groupings.
Whilst notifiable, data were not downloaded for human
immunodeficiency virus infection/acquired immuno-
deficiency syndrome, Creutzfeldt–Jakob disease or vari-
ant Creutzfeldt–Jakob disease because surveillance for
these diseases is not performed by DoH or for severe
acute respiratory syndrome, because reporting to the
DoH is informal; as such, these diseases are not listed
on the NNDSS.

Search term selection and scraping of internet search
trend data
In the construction of Google Flu Trends model, the au-
thors identified search terms by performing correlations
between influenza-like illness data from the US CDC and
the top 50 million Google search queries performed in the
US over the corresponding period [8]. Such data is not
available to the public and an alternative approach to iden-
tification of search terms was required; two approaches
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were used. Firstly terms related to diseases, the aetiological
agents and colloquialisms (such as “hep” for hepatitis or
“flu” for influenza) were manually identified. Secondly,
Google Correlate (www.google.com/trends/correlate) was
queried using monthly surveillance data (described above).
Google Correlate provides a list of up to 100 search terms
that correlate most highly with the query data. To account
for potential language shifts that may have affected search
behaviour [4], this was performed three times using sur-
veillance data covering the periods 2004–13, 2007–13 and
2011–13. Up to 300 search terms were downloaded from
Google Correlate for each notifiable disease (100 search
terms per period analysed) and manually sorted; any term
related to the queried notifiable disease was included,
regardless of the nature of the potential association
Suitable terms were combined with the manually identi-
fied search terms to create a list of search terms (see
Additional file 1). No attempt was made to filter search
terms based upon biological plausibility; any term that
may be perceived to have any association with the
disease of interest was included.
Search frequencies for terms of interest were collected

through Google Trends (www.google.com/trends/). All
data extractions were performed on the 22nd of October,
2013. Google Trends was queried using each of the iden-
tified terms at a national and state/territory level using
the entire time range available (2004–present). Google
Trends presents search frequency as a normalised data
series with values ranging from 0 to 100 (with 100 repre-
senting the point with the highest search frequency and
other points scaled accordingly); functionality for export-
ing search frequency data as a .CSV file is provided. For
the purpose of privacy, data are aggregated at a daily,
weekly or monthly level (or are restricted if there is insuf-
ficient search volume). The level of aggregation applied is
determined by the period analysed and the search fre-
quency; the level of aggregation is not able to be specified
by the user. As the notifiable disease surveillance data
used was in monthly format, monthly indices of query
search frequencies were required. Monthly indices are dis-
played graphically by Google Trends when querying pe-
riods greater than 36 months; rather than downloading.
CSV files, a script was developed to scrape data from the
Google Trends webpage, allowing the problems associated
with the level of data aggregation to be overcome.

Data analysis
Analyses were performed at both national and state levels
for the period 2009–13. As state-level search frequency
data were not always available, particularly for less com-
mon diseases (due to low search frequency at this level of
disaggregation), correlations between state-level notifica-
tion data and national search frequency data were also
performed. Owing to the large number of correlations
performed in this study, Bonferroni adjustments [25] were
applied to significance levels by the equation 1-(1-α)1/n; all
p-values reported in this document correspond to one-
tailed tests. Spearman’s rank correlation coefficients were
used to rank performance.
Time-series cross correlations were performed to as-

sess linear associations between disease notifications and
Google Trend search indices. Cross correlations were
calculated using lag values for Google Trends data ran-
ging from −7 to 7. This range allowed for assessment of
biologically plausible associations that were relevant to
the development of early warning systems. Cross corre-
lations were performed on national data using IBM SPSS
version 21 (SPSS Inc; Chicago, IL, USA). Seasonal differ-
encing was applied (value 1) to all analyses to remove
cyclic trends.
Whilst all available data (2004–13) were downloaded,

analyses for this study were focused on the most recent
five years (2009–13) as preliminary data analyses indi-
cated that Google Trends data were not available prior
to 2009 for numerous search terms (Figure 1; panels 2,
4, 9, 12, 16 and 17). Additionally, shifts in language are
known to affect surveillance systems built upon textual
data [4]. The shortened period (2009–13) was selected to
minimise the effects of language shifts. However, this
period still provides the requisite 50 pairs of observations
for performing cross correlations [26].

Results
In this section we discuss analyses of time series data.
Briefly, the time series analysed were monthly case
numbers for the 64 infectious diseases monitored by the
Australian Government’s National Notifiable Disease
Surveillance System (NNDSS) and Google Trends monthly
search metrics for related internet search terms. In total,
search 164 terms were analysed in this study; this ranged
from a single term for some diseases, up to 14 search terms
for influenza and 35 search terms for pneumococcal
disease. The majority of terms could be categorised as
diseases or aetiological agents (“brucellosis” or “Brucella”),
colloquialisms (“flu”, “hep” or “TB”), symptoms (“cough”,
“white discharge” or “cervical mucus”) or medication or
general health/treatment related queries (“whooping cough
treatment”, “symptoms of dengue” or “flu and pregnancy”).
A few terms that may have environmental (“flash floods”
for leptospirosis) or behavioural (“African tours” for mal-
aria) meanings were also included. A full list of the search
terms analysed is presented in the supplementary material.

Spearman’s correlations
Evaluation of the bivariate associations between surveil-
lance and corresponding search frequency data was per-
formed using the Spearman’s rank correlation. Spearman’s
rank correlations for the 18 top ranked notifiable diseases

http://www.google.com/trends/correlate
http://www.google.com/trends/


Figure 1 Top internet search terms analysed for 18 diseases with the highest Spearman’s rho values (2009–13). National monthly case
numbers (blue) and Australian Google Trend search index (red). Google Trend search terms used in the analysis are presented in Figure 2.
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and terms are presented in Figure 2 and raw data for the
corresponding diseases and search terms are presented in
Figure 1. Results of Spearman’s correlations indicated 17
diseases to be significantly correlated (p < 0.05; Bonferroni
corrected: p < 2.43E−04) with at least one search term;
p-values for 12 of these were <0.0001 (Bonferroni cor-
rected: p < 4.74E−07). Marked differences were observed in
correlations between the various disease groups. Correla-
tions for vaccine-preventable diseases were generally high-
est with six of fourteen exhibiting strong (rho =0.60-0.799)
or very strong (rho =0.80-1.00) correlations, followed by
sexually transmitted infections (2/6), the vector-borne
diseases (3/9), blood-borne diseases (1/6), other diseases
(1/4), zoonoses (0/8), gastrointestinal infections (0/11) and,
finally, quarantinable diseases (0/6). State level correlations
are also reported in Figure 2. Consistency between state
correlations were variable with some diseases exhibiting
reasonable consistency (pertussis; rank 8), whilst others
were inconsistent (hepatitis C; rank 11).

Cross correlations
Results of cross correlations are demonstrated in Figure 3.
Cross correlation results should be interpreted as prod-
uct–moment correlations between the two time series;
they allow dependence between two time series to be
identified over a series of temporal offsets, referred to as
lags. Lag values indicate the degree and direction of asso-
ciations. A lag value of −1 indicates that correlations were
performed using time series data for which the first series
(Google Trends’ data) has been shifted backwards one unit
(a month). Conversely, a lag value of 1 indicates that the
primary series had been shifted forward one unit. Signifi-
cant positive correlations for lag vales of ≥1 or above are
of most interest in the context of this study as they
Figure 2 Spearman’s rho values for the 18 top ranked notifiable dise
with the highest degree of correlation for each disease; see Additional file
The column label in bold indicates the Google Trends data used and subh
numbers are National totals for the period 2009–13. Shading denoted stati
0.001 (orange), 0.01 (yellow) and 0.05 (green) levels. For disease grouping, B
bacterial diseases; QD; Quarantinable diseases; STI: Sexually Transmissible In
diseases; Zoo: Zoonoses.
indicate a positive relationship between the two time
series with Google Trends data leading the notifications (a
pre-requisite for Google Trends data to be a suitable early
warning tool). It should also be noted that seasonal differ-
encing was applied to cross correlations to remove cyclic
seasonal trends.
Disease notifications positively correlated at a lag of

one month (lag 1) with search term frequency for 12 of
the 17 diseases that exhibited significant Spearman’s
rank correlations. Overall, 15 of the 64 notifiable
diseases exhibited significant, positive correlations at lag
of one month. Significant positive associations were
observed for four of the nine vector-borne diseases
(Barmah Forest virus infection, Dengue virus infection,
Murray Valley encephalitis virus infection and Ross
River virus infection), six of the 14 vaccine preventable
diseases (Haemophilus influenzae type b, influenza,
pertussis, pneumococcal disease and varicella zoster
(chickenpox and shingles)), two of the six blood-borne
diseases (hepatitis B (unspecified) and C (unspecified)),
two of 11 gastrointestinal diseases (campylobacteriosis
and cryptosporidiosis) and one zoonosis (leptospirosis).
Positive significant correlations were not observed at a
lag of one month for any of the quarantinable diseases
(n = 6), sexually transmissible infections (n = 6) or other
bacterial infections (n = 4). It should be noted that posi-
tive significant correlations were observed at lags of
over one month (but not at lag 1) for two of the top
ranked 18 diseases (gonococcal infection and meningo-
coccal disease) and 16 diseases overall (see Additional
file 1). Additionally, the terms “haemolytic uraemic
syndrome” and “leprosy” exhibited significant negative
correlations with the respective disease notifications at
a lag of one month.
ases for the period 2009–13. The table only contains the search term
1 for a full list of diseases, search terms and correlation coefficients.
eadings in italics indicate the disease notification data used. Case
stical significance (one-tailed, Bonferroni corrected) at 0.0001 (red),
B: Blood-borne diseases; GI: Gastrointestinal diseases; Other; Other
fections; VBD: Vector-borne Diseases; VPD: Vaccine preventable



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Cross correlation results for the 18 diseases with the highest Spearman’s rho values (2009–13). Cross correlations for two search
terms are displayed for each disease. Coloured bars correspond to the search term with the highest Spearman’s rho value for each disease (red
bars indicate values that exceed the 95% confidence interval, whereas blue bars do not). Unfilled bars indicate cross correlation results for
alternative search terms with highest cross correlation values at a lag value of 1. Confidence intervals (95%) are indicated by the grey lines.
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Discussion
The development and application of internet-based infec-
tious disease surveillance systems has the potential to
enhance infectious disease control and prevention. Whilst
this is widely recognised [4,6,7,12,15,16,18,20] the investi-
gation and application of internet-based surveillance has
not been systematically applied across infectious diseases;
the lack of systemic knowledge regarding the potential
breadth of internet-based surveillance appears to have
restricted the development of systems to a small number
of diseases. To our knowledge, assessments of the use of
internet-based surveillance have only been performed for
five of the 17 diseases that were demonstrated to have a
significant association with internet search terms (influ-
enza [4], dengue [9,27], chickenpox [11,12], hepatitis B
[14] and cryptosporidiosis [13] – the authors of the final
study were, however, not able to detect signals from
internet search queries). Our study suggests that internet-
based surveillance systems have potential application to a
wider range of diseases than is currently recognised. How-
ever, correlations alone should not be viewed as definitive
evidence that such systems are viable; some discretion
must be applied, particularly as the analyses performed
were univariate. Correlations between internet metrics
and both gonococcal infection and chlamydia (Figure 1,
boxes 2 and 7) were high; this appears to be due to a gen-
eral upward trend in both and internet metrics appears to
have little value in detecting perturbations in cases beyond
this. This is supported by the cross correlation results
(which are seasonally differenced); despite being ranked
2nd and 7th by Spearman rho (Figure 2), no positive
correlations were observed for these disease/search term
cross correlations, even at lag 0 (Figure 3). Further re-
search needs to be performed; however, this study sug-
gests surveillance systems build on internet search data to
have significant promise for a number of diseases beyond
those previously described, most notably pneumococcal
disease, Ross River virus infection, pertussis, Barmah
Forest virus and invasive meningococcal disease.
The application of internet-based data to monitoring

systems of interest has been termed “nowcasting”; this
approach does not predict the occurrence of future events,
but rather seeks to produce more timely information on
the systems of interest [28]. For infectious disease surveil-
lance, this is typically achieved through the ability of
internet-based surveillance systems to collect data at an
earlier time point than is possible for traditional systems
or by circumventing bureaucratic structures inherent to
traditional systems that impede information flow [4].
Search terms that exhibit a high level of correlation with
disease notifications are of value as they may be used to
provide faster intelligence on emerging disease events.
Results of cross correlations (Figure 3), however, indi-
cated that forecasting of infectious disease events may
also be possible using internet-based data. Of the 17 dis-
eases that exhibited significant Spearman’s correlations,
12 also had significant positive cross correlations at a
lag of one month. Overall, cross correlations indicated that
forecasting of notification rates using internet-based met-
rics would be most realistic for the vaccine-preventable
and vector-borne diseases. Despite search terms offering
strong or very strong correlations for two of the sexually
transmissible diseases, neither exhibited significant corre-
lations at a lag of one month.
Whilst internet metrics may provide valuable informa-

tion regarding disease status, it is important to view these
within context. The term “dengue mosquito” (Figure 3,
panel 6) leads notifications by up to one month. The data
imply dependence of dengue notifications on searches for
the term “dengue mosquito”. The mechanism of this de-
pendence is more likely that environmental conditions
that increase the abundance of mosquitos in dengue risk
areas correlate with both an increase in dengue notifica-
tions and increased search interest for “dengue mosquito”,
allowing the search term to be used as an indicator for no-
tifications. In this context the internet metrics also provide
information that is of potential significance with respect
to control of dengue fever; there is increased interest re-
garding mosquitos in the community and this may be
driven by an increase in mosquito numbers. Conversely
the incidence of disease in the community may also affect
search habits. The search term “chikungunya” lags notifi-
cations for chikungunya virus infection (Figure 3, panel
18). Searches for “chikungunya” are probably driven by
media exposure. Media bias has previously been reported
to adversely affect internet-based surveillance systems
[27,29-33] and an increase in cases of a disease in the
community will likely result in the publication of stories
about the disease in the media; in turn, media exposure
will drive internet searches on the topic. These processes,
however, are not necessarily mutually exclusive. Searches
for a disease may lead notifications, however, increased
notifications and reporting of an emerging disease event
in the media may also drive internet searches. The com-
plexity of this relationship may make interpretation of
Google Trends’ data more difficult. For pertussis (Figure 3,
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panel 8), the term “whooping” exhibits a significant posi-
tive correlation with disease notifications from lag −7
through to lag 3. It appears that both mechanisms occur
for the same term, demonstrating a potential difficulty in
interpreting these data. It is imperative that any terms
used in the development of forecasting models are heav-
ily screened to address the complexities of the driving
forces behind health-information seeking and routinely
re-evaluated to account for any shifts in search behav-
iour which may occur [4].
There were a number of obvious limitations to this

study. The temporal resolution of the data used was
monthly. Internet-based surveillance systems built upon
monthly data are unlikely to provide better intelligence
than existing traditional surveillance systems; these com-
monly rely upon weekly or daily reporting. This was a
function of the availability of the notification data. Sec-
ondly, the analyses were performed for a specific setting:
Australia. The nuances of language will create differ-
ences in the applicability, not just for different countries,
but also within a country and between different settings
(such as during an influenza pandemic) [4]. Australia
was selected as the study area because internet penetra-
tion in Australia is very high (>80%) [34] and use is largely
restricted to a single search engine; Google maintains a
market share of over 90% in Australia [35]. These features
reduce biases associated with unequal patterns of use
and/or access. Additionally, owing to its extensive size,
Australia exhibits a range of climates and varying environ-
mental conditions, making it susceptible to a wide range
of infectious diseases, including endemic and non-
endemic vector-borne diseases. Additionally, Australia has
a strong public health network and comprehensive infec-
tious disease surveillance systems which compile high
quality data on a range of diseases. Combined, these fea-
tures of internet usage and availability, infectious disease
surveillance systems and diseases susceptibility patterns
make Australia an ideal system in which to study the po-
tential application of internet-based surveillance systems.
It is hoped that this work will stimulate further research
into internet-based infectious disease surveillance systems
beyond Australia. Even within our own study, however, we
observed variation in correlations between internet search
metrics and disease notifications for the various states
(Figure 2). It is imperative to develop models specific to
the region of interest and to assess the performance of any
internet-based system against traditional surveillance data
specific to the region being monitored. Thirdly, this study
analysed the performance of only single search terms in
estimating infectious disease notifications. Whilst Google
has not revealed the terms utilised, or the weightings
applied, Google Flu Trends is reported to incorporate
around 160 search terms [36]. Despite using only a single
search term for each analysis, notifications for 13 diseases
were identified as having a strong or very strong correl-
ation with the selected search terms. Compounding this is
the fact that Bonferroni adjustments were applied in asses-
sing significance. Bonferroni adjustments have previously
been criticised for being overly conservative and for
increasing the occurrence of type II errors (false negatives)
[25]. As such, whilst this study provides a base for future
research, it would be remiss to limit future investigations
to just these diseases.
This study identified numerous infectious diseases of

public health significance that had not previously been in-
vestigated to have potential for monitoring using internet-
based surveillance systems However, this study did not
seek to produce robust, accurate, internet-based surveil-
lance systems or early warning systems that are able to
produce actionable and timely data for public health units.
The aim of this study was to identify the diseases for
which this is possible and to focus future research efforts
into these. To achieve this aim, this study used univariate
analyses to determine the usefulness of internet search
metrics for monitoring a wide range of infectious diseases.
Whilst this simplistic approach was useful for screening
diseases, it will not suffice in monitoring or forecasting
incidence. Future studies should focus on developing
composite indexes incorporate multiple search terms,
or data sources (such as weather data). Models built in
such a manner are more resilient to media-driven be-
haviour, fear-based searching and evolutions in language
[4]. Internet-based surveillance systems have the poten-
tial to be applied to more than just enumerating disease
cases within the community or predicting the onset,
peak and magnitude of outbreaks. Internet-based sys-
tems also have value as tools for planning emergency
department staffing and surge capacity [31,37] or for
healthcare utilisation [38]. Future research needs to also
investigate to application of internet-based data; the
greatest challenge in this field may not actually be creat-
ing models for forecasting or monitoring disease within
the community, but rather applying and articulating the
significance in a manner that is beneficial.
Conclusions
Internet-based surveillance systems have broader applic-
ability for the monitoring of infectious diseases than is
currently recognised. Furthermore, internet-based sur-
veillance systems have a potential role in forecasting of
emerging infectious disease events.
Additional file

Additional file 1: Complete tables of results for Google Correlate
Searches, Google Trends data, Spearman Correlations and cross
correlations.
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