3,165 research outputs found

    X-ray photoemission characterization of La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} films

    Full text link
    The Curie temperature and x-ray photoemission spectra of thin films of La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} (LCSMO) have been studied as a function of the Ca/Sr ratio. The films were grown by off-axis cosputtering from individual targets of La_{0.67}Ca_{0.33}MnO_{3} (LCMO) and La_{0.67}Sr_{0.33}MnO_{3} (LSMO) onto (100) oriented NdGaO_{3} substrates. The films grow with a (100) orientation, with no other orientations observed by x-ray diffraction. For the alloy mixtures, the Curie temperature, T_C, varies slowly as the Ca/Sr is decreased, remaining ≈\approx 300 K, while for the LCMO and LSMO films T_C is 260 and 330 K, respectively. The Mn-O valence structure is composed of two dominant peaks, whose positions undergo a change as the Ca fraction is decreased. The core lines behave as linear combinations of lines from pure LCMO and LSMO.Comment: 3 pages, 5 eps figures. To be published in Journal of Applied Physics (Proceedings of MMM'98

    Coronal heating in multiple magnetic threads

    Get PDF
    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability

    Characterization of transport and magnetic properties in thin film La(0.67)(Ca(x)Sr(1-x))(0.33)MnO(3) mixtures

    Full text link
    We have grown thin films of (100) oriented La_{0.67}(Ca_{x}Sr_{1-x})_{0.33}MnO_{3} on (100) NdGaO_{3} substrates by off-axis sputtering. We have looked at the changes in the resistivity and magnetoresistance of the samples as the Ca/Sr ratio was varied. We find that as the calcium fraction is decreased, the lattice match to the substrate decreases, and the films become more disordered, as observed in transport measurements and the variation in Curie and peak resistance temperatures. We find a correlation between the temperature independent and T^2 terms to the low temperature resistivity. The room temperature magnetoresistance exhibits a maximum as the peak temperature is increased by the substitution of Sr for Ca, and a change in the field dependence to the resistivity at room temperature is observed.Comment: 5 pages, 6 eps figures, to be published in Journal of Applied Physic

    Magnetic reconnection during collisionless, stressed, X-point collapse using Particle-in-Cell simulation

    Full text link
    Two cases of weakly and strongly stressed X-point collapse were considered. Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional spatial compression of the X-point, respectively. In the weakly stressed case, the reconnection rate, defined as the out-of-plane electric field in the X-point (the magnetic null) normalised by the product of external magnetic field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en times being 0.04. Electron energy distribution in the current sheet, at the high energy end of the spectrum, shows a power law distribution with the index varying in time, attaining a maximal value of -4.1 at the final simulation time step (1.25 Alfv\'en times). In the strongly stressed case, magnetic reconnection peak occurs 3.4 times faster and is more efficient. The peak reconnection rate now attains value 2.5, with the average reconnection rate over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the electrons in the current sheet attains now a steeper index of -5.5, a value close to the ones observed in the vicinity of X-type region in the Earth's magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial magnteic energy is converted into heat and accelerated particle energy in the case of weak and strong stress, respectively. In the both cases, during the peak of the reconnection, the quadruple out-of-plane magnetic field is generated, hinting possibly to the Hall regime of the reconnection. These results strongly suggest the importance of the collionless, stressed X-point collapse as a possible contributing factor to the solution of the solar coronal heating problem or more generally, as an efficient mechanism of converting magnetic energy into heat and super-thermal particle energy.Comment: Final Accepted Version (Physics of Plasmas in Press 2007

    Potential barrier lowering and electrical transport at the LaAlO3_{3}/SrTiO3_{3} heterointerface

    Full text link
    Using a combination of vertical transport measurements across and lateral transport measurements along the LaAlO3_{3}/SrTiO3_{3} heterointerface, we demonstrate that significant potential barrier lowering and band bending are the cause of interfacial metallicity. Barrier lowering and enhanced band bending extends over 2.5 nm into LaAlO3_{3} as well as SrTiO3_{3}. We explain origins of high-temperature carrier saturation, lower carrier concentration, and higher mobility in the sample with the thinnest LaAlO3_{3} film on a SrTiO3_{3} substrate. Lateral transport results suggest that parasitic interface scattering centers limit the low-temperature lateral electron mobility of the metallic channel.Comment: 10 pages, 3 figures, and 1 tabl

    The atomic structure of large-angle grain boundaries Σ5\Sigma 5 and Σ13\Sigma 13 in YBa2Cu3O7−δ{\rm YBa_2Cu_3O_{7-\delta}} and their transport properties

    Full text link
    We present the results of a computer simulation of the atomic structures of large-angle symmetrical tilt grain boundaries (GBs) Σ5\Sigma 5 (misorientation angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}), Σ13\Sigma 13 (misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The critical strain level ϵcrit\epsilon_{crit} criterion (phenomenological criterion) of Chisholm and Pennycook is applied to the computer simulation data to estimate the thickness of the nonsuperconducting layer hn{\rm h_n} enveloping the grain boundaries. The hn{\rm h_n} is estimated also by a bond-valence-sum analysis. We propose that the phenomenological criterion is caused by the change of the bond lengths and valence of atoms in the GB structure on the atomic level. The macro- and micro- approaches become consistent if the ϵcrit\epsilon_{crit} is greater than in earlier papers. It is predicted that the symmetrical tilt GB Σ5\Sigma5 \theta = \q{53.13}{^{\circ}} should demonstrate a largest critical current across the boundary.Comment: 10 pages, 2 figure

    One-Step Processing of Spinel Ferrites via the High-Energy Ball Milling of Binary Oxides

    Get PDF
    MnZn ferrites have been produced via the high-energy ball milling of binary oxide precursors. The milled ferrites have a nonequilibrium cation site distribution, with an unusually high population of Zn cations on the octahedral sites. The particle size distribution drops precipitously with milling time from 60±1 to ∼14±1 nm at 10 h, but increases to 18.5±1 nm after long durations (20–40 h) concurrent with the formation of nearly pure ferrite. A 1 h anneal at 673 K facilitates a redistribution of cations to their near equilibrium sites. This processing approach circumvents the need for deleterious high-temperature heat treatments that often lead to nonstoichiometries in the resulting ferrites
    • …
    corecore