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One-step processing of spinel ferrites via the high-energy ball milling
of binary oxides

V. G. Harris,a) D. J. Fatemi, J. O. Cross, E. E. Carpenter, and V. M. Browning
U.S. Naval Research Laboratory, Washington, D.C. 20375

J. P. Kirkland
SFA, Inc., Landover, Maryland 20785

Amitabh Mohan and Gary J. Long
Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65409-0010

~Received 3 February 2003; accepted 1 April 2003!

MnZn ferrites have been produced via the high-energy ball milling of binary oxide precursors. The
milled ferrites have a nonequilibrium cation site distribution, with an unusually high population of
Zn cations on the octahedral sites. The particle size distribution drops precipitously with milling
time from 6061 to ;1461 nm at 10 h, but increases to 18.561 nm after long durations~20–40 h!
concurrent with the formation of nearly pure ferrite. A 1 h anneal at 673 K facilitates a redistribution
of cations to their near equilibrium sites. This processing approach circumvents the need for
deleterious high-temperature heat treatments that often lead to nonstoichiometries in the resulting
ferrites. © 2003 American Institute of Physics.@DOI: 10.1063/1.1577225#

INTRODUCTION

Traditional ferrite fabrication processes involve the re-
peated firing and grinding of binary oxide mixtures until a
nearly pure spinel phase is formed.1 In these processes, solid-
state transformation occurs during the high temperature an-
neals, while grinding is employed to promote homogeneity.
These approaches often suffer from nonstoichiometries that
arise from the vaporization of constituents having low vapor
pressures. As such, one goal of modern ferrite research and
development has been to identify processing schemes that do
not rely upon high temperature anneals for solid-state
reactions.2

In this article, we report the single-step processing of
MnZn ferrite via the high-energy ball milling~HEBM! of
binary oxide precursors. This technique offers several advan-
tages over traditional processing approaches, including low-
temperature solid-state reactions, fewer processing steps, and
a closed processing volume that minimizes exposure of toxic
materials to the operator and eliminates any possibility of
constituent loss to the environment.3 Disadvantages of using
this approach include the formation of ferrites having a non-
equilibrium distribution of cations, a high density of defects,
and contamination by the ball and cylinder materials. We
have found that a low-temperature anneal~;673 K! is effec-
tive in both the redistribution of cations to their equilibrium
sites and the lowering of the defect concentration. Contami-
nation of the resulting ferrite is found to be restricted to
small amounts of Fe from the steel cylinder and balls that are
readily incorporated into the ferrite structure during milling.
We find the Fe contamination to scale linearly with milling
duration; therefore exact stoichiometries can be obtained by

tailoring the starting material ratio with Fe deficiencies.
It is interesting to note that the concept of alloying spinel

ferrites through mechanical means was investigated as early
as 1963.4 Combining ZnO and Fe2O3 in an explosive com-
pression, Kimura observed the formation of ZnFe2O4 via
x-ray diffraction~XRD!. Although much unreacted ZnO and
Fe2O3 still remained, the success was a harbinger of things to
come.

In 1978, Lefelshtelet al.5 attempted to alloy ZnO and
Fe2O3 in a ball mill, achieving partial conversion to ZnFe2O4

according to XRD, although peaks associated with the el-
emental oxides were still dominant. More recently, Kosmac
and Courtney6 subjected ZnO and Fe2O3 to HEBM and
found that Zn ferrite became the dominant phase after 2.5 h.
However, no trace of the spinel phase was seen by XRD after
another 2.5 h milling. Similar results were achieved in the
alloying of Ni ferrite from NiO and Fe2O3. Finally, in 1995,
Jovalekicet al.7 combined NiO and Fe2O3 and attributed all
peaks in the XRD pattern to the spinel phase after milling 35
h, with little change in the XRD pattern upon subsequent
milling. A surge of investigations in the last couple of years
has resulted in similar use of elemental oxide powders to
form MnFe2O4,

8 Fe3O4,
9 MgFe2O4,

10 and
Mn0.50Zn0.50Fe2O4,

11–13 along with additional studies of me-
chanically alloyed ZnFe2O4.

14–18

In addition to mixtures containing only elemental oxides,
a carbonate (ZnCO3) has been ball milled with Fe2O3 to
form ZnFe2O4,

5 and MnFe2O4 and Mn0.75Zn0.25Fe2O4 have
recently been produced by mechanically alloying elemental
oxides with either a carbonate (MnCO3) or an hydroxide
(Fe~OH!3!.

17 In related experiments, precursor powder al-
ready in the spinel form was used to form Co12xFe21xO4

~x50, 0.2, 0.5! via ball milling of Co3O4 with Fe3O4.
19,20

The response of mechanosynthesized ferrites to heat
treatment has also been investigated, both to determine their

a!Author to whom correspondence should be addressed; electronic mail:
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thermal stability and to gain insight into tailoring them for
specific applications. Jovalekicet al.7 compared the specific
resistivity of NiFe2O4 generated from a sintered mixture of
elemental oxides to that of identically sintered powders in
which oxide mixtures had already been subjected to me-
chanical alloying, finding a dramatic decrease in resistivity
with alloying duration. For example, powder subjected to 50
h mechanical alloying exhibits a postsintering resistivity 4
orders of magnitude less than that of the former method,
showing promise for anticorrosion applications where small
resistivities are desirable.

A reactivity study by Sepelaket al.15 found that ZnFe2O4

produced via HEBM, as compared to ZnFe2O4 processed
through a conventional high temperature anneal, exhibits
greater high-temperature capability for both sulfur absorp-
tion and subsequent regeneration. Such improvements may
benefit current environmentally conscious efforts to remove
sulfur from coal gas.

Mechanical alloying has also been shown to yield a
well-ordered spinel phase in ferrites at lower annealing tem-
peratures and shorter duration than required in conventional
ceramics methods.8–10,13,15–17,20

EXPERIMENT

Processing of MnZn ferrites, as described herein, was
accomplished by combining MnO, ZnO, and Fe2O3, at a mo-
lar ratio of 1:1:2 in a steel cylinder of a SPEX 8000™ high-
energy shaker mill. The cylinder was loaded with 5 g of
starting materials~99.95 purity or better! in air with two 8 g
and two 1 g steel balls and shaken at approximately 1200 Hz.
To maintain a ball-charge mass ratio equal to 18:5 for all
samples, the vial was cleaned and reloaded with 5 g of ma-
terial for each milling trial. Milling operations were carried
out for uninterrupted times ranging from 3 to 40 h. Long-
range and short-range structural order of the milled samples
were characterized using XRD and extended x-ray absorp-
tion fine structure~EXAFS!, respectively. Samples milled for
time greater than 20 h were found to consist predominantly
of spinel ferrite and were subjected to additional character-
ization that included Mo¨ssbauer effect~ME!, transmission
electron microscopy, and superconducting quantum interfer-
ence device~SQUID! magnetometry.

RESULTS AND DISCUSSION

XRD patterns collected from the milled mixtures are
plotted in Fig. 1 with similar data from the starting mixture
~i.e., MnO1ZnO1Fe2O3), and a MnZn ferrite standard.21 A
2u range that best illustrates the differences between the pre-
cursor oxide phases and the spinel ferrite is shown. These
data have been multiplied by a scaling factor~denoted on the
left hand side of the plots! and vertically offset to allow an
improved visual comparison. With the exception of the
a-Fe2O3 ~104! and the ferrite~220! and ~400! diffraction
peaks, most of the intense diffraction features for the starting
mixture and the ferrite overlap. Therefore, we will focus on
the amplitude of these unique diffraction features to signal
the presence and the degree of conversion from the binary
oxides to the ferrite phase during milling. In Fig. 1, for mill-

ing times less than 6 h, the diffraction features corresponding
to the binary oxide phases appear broadened and reduced in
amplitude from the effects of the reduced particle size and
the incorporation of strain and defects. These features retain
their relative amplitudes andd spacing indicating that little
ferrite conversion has occurred. However, for times greater
than 6 h, one sees clear evidence of diffraction features that
correspond with the ferrite~220! and ~400! peaks. The in-
creased amplitude and shift to higherd spacing of the most
intense peak also suggests the presence of the ferrite~311!
peak. As milling time is increased, the ferrite peaks grow in
intensity and become further resolved at the expense of
peaks corresponding to the precursor oxides. After times
greater than 21 h, the only peaks detected above background
are attributable to the ferrite phase. A lattice parameter of
8.421~6! Å is measured for the 21 h milled ferrite, which
increases to 8.429~1! Å after 40 h of milling. An average
particle size of 18.561.0 nm was measured for the 40 h
milled ferrites using the method of van Laue22 in which in-
strumental broadening and particle shape are considered.
Figure 2 plots the particle size evolution as a function of
milling duration. The average particle size precipitously falls
with milling duration from its maximum of;60 nm~i.e., the
starting mixture!. A minimum of ;14 nm is reached after 10
h of milling. The particle size then starts to increase concur-
rent with the formation of nearly pure spinel ferrite. The

FIG. 1. Partialu–2u x-ray diffraction patterns of high-energy ball-milled
oxide mixtures are shown with data from the starting mixture and the MnZn
ferrite standard.~CuKa radiation was employed in data collection!.
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reason for this is unclear, although it may be due to a coars-
ening of the particles accompanying recrystallization. This
may be assisted by the heating of the milling cylinder and
charge.

Because XRD is more sensitive to medium- and long-
range structural order, it is not the ideal technique to charac-
terize nanoparticles. To address this deficiency, we have per-
formed EXAFS measurement of the Fe, Mn, and ZnK
absorption edges to complement these diffraction data. The
EXAFS analysis is used to described the short-range struc-
tural environment around these cations.

EXAFS data were collected using the NRL X23B and
the NIST X23A2 beamlines of the National Synchrotron
Light Source at Brookhaven National Laboratory.23 Analysis
followed established procedures24 leading to the Fourier
transformation of EXAFS data to radial coordinate space
~Å!.

An analysis of the Fourier transformed data as a function
of milling time shows that a 50% conversion from the pre-
cursor oxides to the spinel ferrite occurs after;500 m ~8.3
h! of continuous milling. Fourier transformed Fe, Mn, and
Zn EXAFS data collected from the MnZn ferrite standard
and the 40 h milled sample are shown in Figs. 3~a!–3~c!,
respectively. The data are plotted on two independenty axes
to allow direct comparison between data sets without the loss
of amplitude information. In this form, the positions of the
Fourier peaks typically correspond to bond distances be-
tween the absorber and the backscatterers, while the ampli-
tudes arise predominantly from the coordination and the
atomic order of local atom is shells.25 The Fourier peaks seen
in Fig. 3 have been previously identified to correspond with
atom pair correlations and/or multiple scattering paths within
the ferrite unit cell.26

The structure of spinel ferrites consists of metallic cat-
ions occupying 8 of the 64 available tetrahedral~A! sites and
16 of the 32 available octahedral~B! sites within a close-

packed oxygen lattice. These sites constitute individual sub-
lattices leading toA–A and B–B antiferromagnetic interac-
tions, andA–B interactions that are either antiferromagnetic
or ferromagnetic depending upon the cation specie. The lat-
ter is typically dominant, leading to ferrimagnetism, although
in some ferrites, such as conventionally processed ZnFe2O4,
the absence of anA–B interaction results in antiferromag-
netism at low temperatures. For any given ferrite, the valence
and population of cations on theA andB sublattices princi-
pally determine the material’s magnetic and electronic char-
acter. Recently, studies of both the cation
distribution11–13,17,18and valence13 in mechanically alloyed
spinel ferrites have been performed.

The dominant feature in the Fourier transform that sig-
nifies unambiguous octahedral site~B site! occupancy of the
absorber is the peak centered near 2.7 Å. This peak’s ampli-
tude arises solely from the scattering of 6B cations and 6
anions centered near 2.97 Å.27 TheA-site occupancy is simi-
larly indicated by a peak centered near 3.2 Å which arises

FIG. 2. Particle size as a function of milling duration. The solid line is
presented as a guide to the eye, whereas the dashed line is presented as a
zero slope reference. Particle size was determined via the method of von
Laue ~Ref. 22! in which instrumental broadening and particle shape are
considered.

FIG. 3. Fourier transformed~a! Fe, ~b! Mn, and ~c! Zn EXAFS data from
the ferrite produced after 40 h of milling and the MnZn ferrite standard. All
data arek3 weighted withk ranges of:~a! 2.85–13.4,~b! 3.1–11.7, and~c!
2.5–12.6 Å21.
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from the scattering of 12 octahedral-site~B-site! cations and
12 anions centered near 3.48 Å.@The differences between the
bond distance and the radial coordinate of the Fourier trans-
form ~FT! peak in question is attributable to the electron
phase shift that has not been incorporated into the data at this
stage of analysis.# Modeling the data using multiple-
scattering XAFS has showed the amplitudes of these peaks
simulation codes28 to reflect accurately the distribution of
absorbing cations on theA andB sites.29

In comparing theB:A peak amplitude ratios of the
sample milled 40 h to that of the standard, one sees that the
milled sample possesses a higher fraction of Fe and Mn cat-
ions on theA sites, with an unusually high population of Zn
cations on theB sites. Numerous studies have established
that Fe and Mn cations may occupy bothA andB sites de-
pending upon the type and amount of other cations present as
well as processing conditions. In contrast, it is rare to find a
significant population of Zn cations on theB sites in equilib-
rium spinel structures. However, recent work by Hamdeh
et al.30 suggests that ball milling of partially inverted Zn fer-
rite aerogels increasesB-site filling by Zn cations. The ap-
pearance of theB peak in Fig. 3~c! showsunambiguously
that ball milling acts to distribute the Zn cations onto both
sites. A heat treatment at 673 K is effective in facilitating a
redistribution of cations to sites more closely resembling
their equilibrium distribution. This is shown in Fig. 4, where
the Fourier transformed Zn EXAFS data collected from the
milled sample after heat treatment are plotted with similar
data from the standard. In contrast to Fig. 3, these data share
a commony axis and exhibit nearly the same peak amplitude
and radial distributions. More importantly, the heat treatment
has resulted in the removal of the signatureB-site peak indi-
cating that the Zn cations now only reside on the tetrahedral
sites. The fact that the FT peak amplitudes are similar in the
annealed sample and the standard indicates that the atomic
disorder introduced to the ferrite during processing has been
significantly, if not totally, removed. This indicates the ease
in which one can ‘‘repair’’ the structure of the ferrite after
milling.

Mössbauer spectra31 collected at 295 and 78 K from the
sample milled for 40 h are presented in Figs. 5~a! and 5~c!.

The spectrum collected at room temperature consists of
broadened sextets that are clearly indicative of a distribution
of hyperfine fields~HFFs!. In these plots the data are pre-
sented as symbols and the solid curve represents the best fit
to the data. The best fit was obtained using the method of
Wivel and Morup32 that represents the distribution of hyper-
fine fields with 22 sextets. In these fits the components of
each sextet were held in the area ratio of 3:2:1:1:2:3 and the
only variables were the isomer shift, the quadrupole shift,
and the linewidth. The HFF distribution from the best fit of
Fig. 5~a! @shown in Fig. 5~b!# can result either from a distri-
bution of different cations in the local environment of each
trivalent Fe cation, or from a distribution of small particle
sizes with a range of magnetic HFFs~or both!. Unfortu-
nately, it is difficult to determine the relative importance of
the two contributions to the HFF distribution. As might be
expected, the distribution of HFFs sharpens at 78 K@Fig.
5~c!#. For the 40 h milled sample, the mean values of HFFs
are 28965 and 48765 kOe at 295 and 78 K, respectively.
The average isomer shift is 0.3260.01 mm/s at 295 K and
0.4660.01 mm/s at 78 K, values that are very typical of
trivalent Fe in a spinel oxide lattice.33 Further, as expected
for a cubic like environment, the quadrupole shifts are very
small, ranging from 0.0760.01 mm/s at 295 K to 0.0060.01
mm/s at 78 K. The fitting procedure assumes no texture in
the absorber and no relaxation on the Mo¨ssbauer time scale.
Because HEBM provides a broad particle size distribution,
which often includes very small particles~i.e.,,10 nm!, it is
surprising that we observe no clear evidence for a superpara-
magnetic component. However, we cannot rule out the pres-
ence of a superparamagnetic component from our analysis.
Further, we detect no significant fraction of unreacted
Fe–oxide phases~i.e., g-Fe2O3, a-Fe2O3) that would have
been clearly observable due to their unique HFFs.

Magnetization studies of the ferrite sample were per-
formed using a Quantum Design™ SQUID magnetometer.
Field dependent data were taken by sweeping the field while

FIG. 4. Fourier transformed Zn EXAFS data from the milled sample after
heat treatment at 673 K, and similar data from the standard. Notice that both
data sets share a commony axis.

FIG. 5. Transmissions Mo¨ssbauer spectra acquired at:~a! 295 K and~c! 78
K for the sample milled for 40 h. Hyperfine field distributions resulting from
the best fit of the data in panel~a! and~c! are presented in panels~b! and~d!,
respectively.
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holding the sample at fixed temperature, whereas the tem-
perature dependence of the saturation magnetization was
measured by cooling the sample in a large~5 T! applied field.
Figure 6 plots the hysteresis curves taken atT5300 K and
T56 K for the as-milled sample together with data taken at
T510 K for the sample after subjecting it to a low tempera-
ture ~523 K! anneal. The observed room temperature satura-
tion magnetization for the as-milled sample is considerable
less than the value of;5000 G reported for polycrystalline
samples of similar composition.34 However, as shown in the
figure, a low temperature anneal is effective in substantially
increasing the saturation magnetization. This is consistent
with the EXAFS results discussed earlier in which low-
temperature anneals were shown effective in the redistribu-
tion of cations to their equilibrium lattice sites. Also evident
in this figure is a small nonsaturating contribution to the
magnetization at high fields. This is consistent with the pres-
ence of a superparamagnetic component. This is most likely

attributable to the fact that the broad particle size distribution
associated with HEBM process results in a finite fraction of
small particles in the superparamagnetic regime. This result
is consistent with the results of the ME measurements that
showed a wide distribution of HFFs.

Figure 7 plots the low field behavior of the magnetiza-
tion. While the room temperature data show no evidence for
an irreversible magnetization, the low temperature behavior
exhibits significant hysteresis with coercive fields of 600 and
450 Oe for the as-milled and annealed samples, respectively.
This is consistent with the very broad ferromagnetic transi-
tion shown in Fig. 8 that plots saturation magnetization ver-
sus temperature. The Curie temperature reported for poly-
crystalline samples of this composition is approximately 400
K.34 Our samples are measured to have a higher value simi-
lar to that reported by Tanget al. for fine particles of Mn
ferrite.35 We attribute this effect to the nonequilibrium distri-
bution of cations possibly caused by surface oxidation.36,37

The very broad ferromagnetic transition seen in Fig. 8 can be
attributed to both the distribution of nonmagnetic Zn12 cat-
ions on both sublattices as well as the broad distribution of
small particle sizes exhibiting a range of magnetic hyperfine
fields. The irreversibility seen at low temperatures is likely
due to the magnetic ordering of these smaller particles at low
temperatures.

SUMMARY

We have shown that nearly pure phase spinel ferrites can
be fabricated via the high-energy ball milling of binary oxide
precursors. This approach circumvents the deleterious high
temperature anneals required by traditional processing
routes. Although the final product suffers from a nonequilib-
rium cation distribution and a high concentration of defects,
a low-temperature anneal is found to be effective in facilitat-
ing the redistribution of cations to their equilibrium sites and
reducing the defect density. Challenges exist for the imple-
mentation of such a processing scheme at industrial scales.

FIG. 6. Field dependent magnetization data for an as-milled sample of
Mn~0.5!Zn~0.5!Fe2O4 at T5300 K ~d! and atT5 6 K ~h!. Also shown are data
collected at 10 K for the milled sample after annealing~L!.

FIG. 7. Low field magnetization results for ball-milled Mn~0.5!Zn~0.5!Fe2O4 at
T5300 K ~d!, and atT56 K ~h!. Also shown are data collected at 10 K for
the milled sample after annealing~L!.

FIG. 8. Magnetization as a function of temperature.
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