1,187 research outputs found
Self-energy and Self-force in the Space-time of a Thick Cosmic String
We calculate the self-energy and self-force for an electrically charged
particle at rest in the background of Gott-Hiscock cosmic string space-time. We
found the general expression for the self-energy which is expressed in terms of
the matrix of the scattering problem. The self-energy continuously falls
down outward from the string's center with maximum at the origin of the string.
The self-force is repulsive for an arbitrary position of the particle. It tends
to zero in the string's center and also far from the string and it has a
maximum value at the string's surface. The plots of the numerical calculations
of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra
We present an orthogonal basis of gauge invariant operators constructed from
some complex matrices for the free matrix field, where operators are expressed
with the help of Brauer algebra. This is a generalisation of our previous work
for a signle complex matrix. We also discuss the matrix quantum mechanics
relevant to N=4 SYM on S^{3} times R. A commuting set of conserved operators
whose eigenstates are given by the orthogonal basis is shown by using enhanced
symmetries at zero coupling.Comment: 29 pages, typos corrected, references adde
A Coupled-Cluster Formulation of Hamiltonian Lattice Field Theory: The Non-Linear Sigma Model
We apply the coupled cluster method (CCM) to the Hamiltonian version of the
latticised O(4) non-linear sigma model. The method, which was initially
developed for the accurate description of quantum many-body systems, gives rise
to two distinct approximation schemes. These approaches are compared with each
other as well as with some other Hamiltonian approaches. Our study of both the
ground state and collective excitations leads to indications of a possible
chiral phase transition as the lattice spacing is varied.Comment: 44 Pages, 14 figures. Uses Latex2e, graphicx, amstex and geometry
package
Avaliação do incremento em volume de madeira de Quassia amara L.- Simaroubaceae, em cultivo agroecológico no trópico úmido da Costa Rica.
Quassia amara é arbusto de 3 a 6 metros de altura, tendo sido retirado indiscriminadamente das florestas para extrair do caule as quassinas usadas na indústria farmacêutica e como inseticida em agricultura orgânica. Não se tem muita informação técnica acerca do crescimento desta espécie para subsidiar estratégias de manejo sustentado. Este trabalho tem como objetivo avaliar o crescimento de Q. amara L. em cultivo agroecológico na Costa Rica. O trabalho consistiu em realizar avaliações do desenvolvimento de indivíduos de Q. amara em parcelas permanentes de medições, instaladas em meio às plantações desta espécie em consórcio com essências arbóreas. Foram efetuadas medições de diâmetro do caule a 10 cm do solo e altura total. Foi observado que em função das taxas de crescimento vegetal e incrementos médio e corrente anuais (IMA e ICA), mesmo após cinco anos de plantio, a madeira de Quassia amara para extração de quassinas não está pronta para colheita
AdS Branes Corresponding to Superconformal Defects
We investigate an AdS_4 x L_2 D5-brane in AdS_5 x X_5 space-time, in the
context of AdS/dCFT correspondence. Here, X_5 is a Sasaki-Einstein manifold and
L_2 is a submanifold of X_5. This brane has the same supersymmetry as the
3-dimensional N=1 superconformal symmetry if L_2 is a special Legendrian
submanifold in X_5. In this case, this brane is supposed to correspond to a
superconformal wall defect in 4-dimensional N=4 super Yang-Mills theory. We
construct these new string backgrounds and show they have the correct
supersymmetry, also in the case with non-trivial gauge flux on L_2. The
simplest new example is AdS_4 x T^2 brane in AdS_5 x S^5. We construct the
brane solution expressing the RG flow between two different defects. We also
perform similar analysis for an AdS_3 x L_3 M5-brane in AdS_4 x X_7, for a weak
G_2 manifold X_7 and its submanifold L_3. This system has the same
supersymmetry as 2-dimensional N=(1,0) global superconformal symmetry, if L_3
is an associative submanifold.Comment: 22 pages, LaTeX, 3 figures. v2: typos corrected, references added.
v3: typos correcte
Giant Gravitons - with Strings Attached (III)
We develop techniques to compute the one-loop anomalous dimensions of
operators in the super Yang-Mills theory that are dual to open
strings ending on boundstates of sphere giant gravitons. Our results, which are
applicable to excitations involving an arbitrary number of open strings,
generalize the single string results of hep-th/0701067. The open strings we
consider carry angular momentum on an S embedded in the S of the
AdSS background. The problem of computing the one loop anomalous
dimensions is replaced with the problem of diagonalizing an interacting Cuntz
oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the
Chan-Paton factors for open strings propagating on multiple branes can arise
dynamically.Comment: 66 pages; v2: improved presentatio
Effect of acoustic absorption by hydrophone and cable on a reverberation technique for measuring sound absorption coefficient of particulate suspensions
Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops
We investigate the solar flare of 20 October 2002. The flare was accompanied
by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray
emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of
the HXR time profiles in different energy channels made with the Lomb
periodogram indicates two statistically significant time periods of about 16
and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR
emission in the impulsive phase of the flare. The 16-second QPP were more
pronounced in the thermal HXR emission and were observed both in the impulsive
and in the decay phases of the flare. Imaging analysis of the flare region, the
determined time periods of the QPP and the estimated physical parameters of
magnetic loops in the flare region allow us to interpret the observations as
follows. 1) In the impulsive phase energy was released and electrons were
accelerated by successive acts with the average time period of about 36 seconds
in different parts of two spatially separated, but interacting loop systems of
the flare region. 2) The 36-second periodicity of energy release could be
caused by the action of fast MHD oscillations in the loops connecting these
flaring sites. 3) During the first explosive acts of energy release the MHD
oscillations (most probably the sausage mode) with time period of 16 seconds
were excited in one system of the flare loops. 4) These oscillations were
maintained by the subsequent explosive acts of energy release in the impulsive
phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure
Partial-wave analysis of the eta pi+ pi- system produced in the reaction pi-p --> eta pi+ pi- n at 18 GeV/c
A partial-wave analysis of 9082 eta pi+ pi- n events produced in the reaction
pi- p --> eta pi+ pi- n at 18.3 GeV/c has been carried out using data from
experiment 852 at Brookhaven National Laboratory. The data are dominated by
J^{PC} = 0^{-+} partial waves consistent with observation of the eta(1295) and
the eta(1440). The mass and width of the eta(1295) were determined to be 1282
+- 5 MeV and 66 +- 13 Mev respectively while the eta(1440) was observed with a
mass of 1404 +- 6 MeV and width of 80 +- 21 MeV. Other partial waves of
importance include the 1++ and the 1+- waves. Results of the partial wave
analysis are combined with results of other experiments to estimate f1(1285)
branching fractions. These values are considerably different from current
values determined without the aid of amplitude analyses.Comment: 22 pages, 8 figure
- …
