3,262 research outputs found

    Critical phenomena in the Random Ising Model.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D68361/86 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Kinetics of acute hepatitis B virus infection in humans

    Get PDF
    Using patient data from a unique single source outbreak of hepatitis B virus (HBV) infection, we have characterized the kinetics of acute HBV infection by monitoring viral turnover in the serum during the late incubation and clinical phases of the disease in humans. HBV replicates rapidly with minimally estimated doubling times ranging between 2.2 and 5.8 d (mean 3.7 ± 1.5 d). After a peak viral load in serum of nearly 1010 HBV DNA copies/ml is attained, clearance of HBV DNA follows a two or three phase decay pattern with an initial rapid decline characterized by mean half-life (t1/2) of 3.7 ± 1.2 d, similar to the t1/2 observed in the noncytolytic clearance of covalently closed circular DNA for other hepadnaviruses. The final phase of virion clearance occurs at a variable rate (t1/2 of 4.8 to 284 d) and may relate to the rate of loss of infected hepatocytes. Free virus has a mean t1/2 of at most 1.2 ± 0.6 d. We estimate a peak HBV production rate of at least 1013 virions/day and a maximum production rate of an infected hepatocyte of 200–1,000 virions/day, on average. At this peak rate of virion production we estimate that every possible single and most double mutations would be created each day

    Lattice dynamics effects on small polaron properties

    Full text link
    This study details the conditions under which strong-coupling perturbation theory can be applied to the molecular crystal model, a fundamental theoretical tool for analysis of the polaron properties. I show that lattice dimensionality and intermolecular forces play a key role in imposing constraints on the applicability of the perturbative approach. The polaron effective mass has been computed in different regimes ranging from the fully antiadiabatic to the fully adiabatic. The polaron masses become essentially dimension independent for sufficiently strong intermolecular coupling strengths and converge to much lower values than those tradition-ally obtained in small-polaron theory. I find evidence for a self-trapping transition in a moderately adiabatic regime at an electron-phonon coupling value of .3. Our results point to a substantial independence of the self-trapping event on dimensionality.Comment: 8 pages, 5 figure

    Growth, microstructure, and failure of crazes in glassy polymers

    Full text link
    We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze nucleation, widening, and breakdown for a wide range of temperature, polymer chain length NN, entanglement length NeN_e and strength of adhesive interactions between polymer chains. Craze widening proceeds via a fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length, and the characteristic length of stretched chain segments in the polymer craze is Ne/3N_e/3. In the craze, tension is mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large tensile forces. The failure mode of crazes changes from disentanglement to scission for N/Ne10N/N_e\sim 10, and breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsistencies with previous theoretical models of craze widening that were based on continuum level hydrodynamics

    Are mega-events a solution to address physical inactivity? Interrogating the London 2012 Paralympic sport participation legacies among people with disabilities

    Get PDF
    Understanding why non-active people with disabilities have not participated in more sport since the London 2012 Paralympic Games is the focus of this paper. This research reviews the constraints preventing people with disabilities from participating in more sport, and the role the London 2012 Paralympic Games plays in this. Eighty-one people with disabilities in England who are non-active completed an online questionnaire exploring their constraints to participating in more sport. The data suggests attitudes towards the London 2012 Paralympic Games were not an important reason for the lack of sport participation: instead, systemic and social barriers are more constraining to participation in more sport. A factor analysis identified four components that constrain non-active people with disabilities: sport provision; economic; unawareness of how to include people with disabilities in sporting activities; and access to sport participation opportunities. The four components explained 72.93% of the total variance. It is recommended mega sporting events are not used as a policy intervention to increase sport participation of people with disabilities, as this does not account for constraining social and systemic barriers to sports participation. Instead, bottom-up solutions designed and managed in conjunction with people with disabilities may be more effective

    Fast Algorithm for Partial Covers in Words

    Get PDF
    A factor uu of a word ww is a cover of ww if every position in ww lies within some occurrence of uu in ww. A word ww covered by uu thus generalizes the idea of a repetition, that is, a word composed of exact concatenations of uu. In this article we introduce a new notion of α\alpha-partial cover, which can be viewed as a relaxed variant of cover, that is, a factor covering at least α\alpha positions in ww. We develop a data structure of O(n)O(n) size (where n=wn=|w|) that can be constructed in O(nlogn)O(n\log n) time which we apply to compute all shortest α\alpha-partial covers for a given α\alpha. We also employ it for an O(nlogn)O(n\log n)-time algorithm computing a shortest α\alpha-partial cover for each α=1,2,,n\alpha=1,2,\ldots,n

    Some mechanisms of "spontaneous" polarization of superfluid He-4

    Full text link
    Previously, a quantum "tidal" mechanism of polarization of the atoms of He-II was proposed, according to which, as a result of interatomic interaction, each atom of He-II acquires small fluctuating dipole and multipole moments, oriented chaotically on the average. In this work, we show that, in the presence of a temperature or density gradient in He-II, the originally chaotically oriented tidal dipole moments of the atoms become partially ordered, which results in volume polarization of He-II. It is found that the gravitational field of the Earth induces electric induction U =10(-7)V in He-II (for vessel dimensions of the order of 10 cm). We study also the connection of polarization and acceleration, and discuss a possible nature of the electric signal dU = kdT/2e observed by A.S. Rybalko in experiments with second sound.Comment: 13 pages; the calculation is extended and refined; v4: reconstructio

    Calculation of excited polaron states in the Holstein model

    Full text link
    An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving three excited (coherent) polaron bands below the phonon threshold, is obtained. The coherent contribution of the excited states to both the single-electron spectral density and the optical conductivity is evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain complementary information about the single-electron system at zero temperature. The chosen method reveals the connection between the excited bands and the renormalized local phonon excitations of the adiabatic theory, as well as the regime of parameters for which the electron self-energy has notable non-local contributions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR

    Effects of dimensionality and anisotropy on the Holstein polaron

    Full text link
    We apply weak-coupling perturbation theory and strong-coupling perturbation theory to the Holstein molecular crystal model in order to elucidate the effects of anisotropy on polaron properties in D dimensions. The ground state energy is considered as a primary criterion through which to study the effects of anisotropy on the self-trapping transition, the self-trapping line associated with this transition, and the adiabatic critical point. The effects of dimensionality and anisotropy on electron-phonon correlations and polaronic mass enhancement are studied, with particular attention given to the polaron radius and the characteristics of quasi-1D and quasi-2D structures. Perturbative results are confirmed by selected comparisons with variational calculations and quantum Monte Carlo data
    corecore