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Abstract 

The modern techniques of field theory applied to critical phenomena, are 

briefly discussed, with particular emphasis on the use of the e-expansion to 

extract the asymptotic behaviour in the critical region. The dimensional 

regularisation and minimal subtraction method of renormalisation, Introduced 

by 't Hooft and Veltman, is outlined. These m9thods, along with a Monte Carlo 

simulation on a highly parallel computer, are utilised in extracting information 

pertaining to the behaviour near criticality of the random, site-diluted Ising 

model. 

The universal ratio of the susceptibility amplitude above and below the 

critical temperature is determined to one higher order than previously in an 

e-expansion, within the framework of the replica formalism. The calculation is 

performed using a Taylor expansion, ý in the number of replicas, of the 

transverse propagator appearing In the Hamiltonian, about the longitudinal. 

This higher order correction goes in the right direction for agreement with 

experiment. 

An extension of the formalism to embrace the presence of two sets of 

replica spins is used to derive the o(E 1/2) term in an expansion of the 

additional static - correlation function, C(sl(q), arising from the 

non-interchangeability of the thermal and configurational averages In the 

random model. The appearance of C(sl(q) in the structure factor Implies that 

results of neutron scattering experiments to measure the susceptibility 

amplitude ratio must be re-Interpreted. 

Finally, analysis of the properities of block spin variables In a Monte Carlo 

simulation Is used to determine the phase diagram and critical exponents In 

two-dimensions. Possible Interpretations of the observed evolution of the 

exponent ratio, B/V, under Increasing dilution are discussed. 
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CHAPTER I 

INTRODUC71ON TO FIELD THEORY AND CRITICAL PHENOMENA 

I. I. Introduction to Critical Phenomena 

Many physical systems exhibit phase transitions. A phase transition occurs 

when there Is a discontinuous or singular behaviour resulting from the 

continuous change of a control variable and is often associated with a change 

! 
In -Ahe symmetry, of, the - system. Phase transitions are evidence of the 

macroscopic cooperative behaviour of the microscopic constituents of the 

system. The classic example of a phase transition is the gas-liquid transition 

in water, where the densitV changes -discontinuousIV as the temperature 

reaches a critical value. The discontinuitV in the densitV across the. 

coexistence curve plays the role of an order parameter, taking a non-zero 

value below the critical temperature, and zero above. 

Ehrenfest classified phase transitions as 

a 
wd h order if the dh derivadve of the free energy Is the first 

discontinuous or singular derivative. " 

The modern classification is that a transition Is first order If the first derivative 

is discontinuous or singular, otherwise the transition is of second order or 

continuous. 

Throughout this thesis we will be concerned with ferromagnetic systems 

and will therefore adopt the terminology of magnetism. 

If a ferrornagnetic system acquires a non-zero magnetisation via a 

second-order phase transition as we lower the temperature through Tcfý then 



Tc Is a critical point. As 'we approach a critical point various physical 

quantities either vanish, or behave asXmptotically as a power of the reduced 

temperature, Le., T- Tc. For example, in a ferromagnet the order parameter is 

the bulk magnetisation, M, and as we approach Tc from below (ih zero external 

field, H) 

(-T, -T) 

Is called a'critical exponent 

Another important concept Is that of , scaling near, a critical point 

(Widom', 1965). To illustrate, the equation of state relates the external, applied 

magnetic field to the internal magnetisation and temperature, viz., 

H=S(m, -r) -- 
Near the critical point f is a generallsed homogeneous function of M and 

T- Tcp Le., 

wx 

T-T) (1.4) 

This can be used to 'derive expressions for the critical ; exponents and 

scaling laws relating these exponents to one another. 

The concept of universality embodies the Idea that the critical exponents 

and the functional form of f are independent of the details of the microscopic 

interaction. ' However, they do depend on the'number of space A imen sions, the 
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internal symmetry of the system and the range of ý the interaction (e. g., if it is 

long-range*as opposed to nearest neighbour, dipolar as opposed to spherically 

symmetric, &c. ) 

Theoretical understanding of the above phenomena has greatly advanced in 

the last 15 years due to the introduction of the renormalisation group (Wilson, 

1972) and the use of field theory in which'the lattice, model of ý, statistical 

mechanics Is transformed into a representation by continuous classical fields 

(Br6zIn et at'1973). 

In the remainder of this chapter we review the techniques of field theory 

with reference to statistical mechanics. In section (1.2) we highlight1he main 

features of the approach- and show how to obtain the Greens functions which 

contain the essential physics. In section (1.3) ýwe describe the main 

calculational method In field theory, a perturbative expansion about an exactly 

soluble model. Section (1.4) shows how the divergences arising' In 

perturbation series can be systematically handled by renormalisation of the 

theory. Random systems and their importance are discussed in section (1.5) 

and in section (1-6) research projects detailed in this thesis are surnmarised. 

1.2. Field Theory and Critical Phenomena 

This section reviews- the main aspects of the continuous field description 

of critical phenomena and discusses how to abstract the Greens functions 

which contain the essential physics from this approach. For a modern, 

detailed description of Field TheorV applied to this topic the reader is referred 

to the excellent book bV Amit (1984). 

The first stage in describing a' system using a continuous field 
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representation is to 'construct the'Hamiltonian in terms 'of the continuous field 

variables. This enables one to write down the partition function, 

-Z, = 
Z P, -. (1.5) 
Isp; -A 

which generates all the correlation functions of the order parameter. If we 

start from a lattice formulation with spin variable si on site I and a Hamiltonian 

of the general form 

E 

provided the coupling constant matrix, K, Is symmetric and positive definite, 

we can transform Z to a continuous field description by means of the identity 

Hubbard, 11 958; Stratonovich, l 957; Bakerl 962) (Berlin and Kac, 1952, 

SLY, qs! '4 L 's 
ýi +L 

Lot 'L , (1.7).. 

Here, N is a constant. 

This transformation decouples, the spin varia. bles, {sj) on the right-hand 

side of (1.7) and the sum over the spin configurations In the partition function 

can now be evaluated. This gives rise to a term In the resulting Hamiltonian 

which on Taylor expansion produces local interactions of the field 0, e. g., 02, 

04, &c., whereas the OjK-1jj0j term produces non-local derivative Interactions, 

e. g., VO 2, &c. An alternative route to constructing an Hamiltonian for the 

system is to appeal to symmetry considerations and include in the Hamiltonian 

all terms which are consistent with the symmetries present in the lattice 

model (Mukamel and Krinsky, 1976). In both of these approaches the resulting 

series of interaction terms must be truncated at some point to enable us to 
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carry out calculations using the field theoretic Hamiltonian, f6(0). All terms 

which correspond to relevant perturbations of the system are retained, and the 

other, so-called irrelevant interactions are discarded. The meaning of the 

terms relevant and irrelevant in this context will be more precisely defined 

when we consider the renormalisation group later in this chapter. The general 

form of the Hamiltonian is thus 

14 =S 
22, j 3- (, q« -tLr, e+LU, e +.... - 4, ei 

2x. 44! (1.8) 

where we have adjusted the scale of the field 0 to produce a coefficient of J 

for the gradient term and we have included an external field, HO. The ellipsis 

indicates other possible relevant terms contributing to the Hamiltonian. 

If we consider the simplest case In which *the onIV terms in 16 are those 

thown above, we see immediateIV 6at u>O if ths'potential, 

IV ý =1 r., ý, 
+I 

Z Ll! 

>0 . In the Is to be bounded below. For r,, there are two possibilities, %0 or r" 

first case, the potential . has the familiar, 'vdouble-well" shape and the likely 
AOA -100 

value of 0 isk. X in the second, there is only one minimum and the likely value 

of o is -zero. Thus ro plays the role of temperature, with r>O 

corresponding to T>Tcj and rý<O to T<Tc within the approximations of mean 

field theory criticality corresponds to the condition r=O. a 

Expectation values of operators are defined through 

< O> -= :Zý ID ý 
(1.10) 

where the notation fl)ý implies an integral over all functional forms of the 
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field O(x). 

If we Introduce' a source term, J, into the Hamiltonian which couples 

linearIV to the field 0, all the correlation functions oUthe order parameter, or 

Greens functions, are generated bV taking functional derivatives of the 

partition function with respect to the source, Le., 

-1171 
SIR% 0 ... 

Z(j) Is therefore also known as the generating functional for these quantities. 

'We 
can also define a free energy functional F(J) for our continuous field 

description, analogous to the lattice model free energy, through the definition 

(1.12) 

Taking appropriate derivatives with respect to J, we find that F(J) Is the 

generating functional for the connected Greens functions, or cumulants, 

I 

Tmo 

'These correspond to an expansion of the correlation function of N fields from 

which all possible factorlsatlons have-been subtracted, e. g., 

Glqýl ý-X%)-Xz) =( ý(X, ) 4Xo - <4xxoýOtxz)'ý 
Ii. C (1.14) 

(1,1 G (-X'b 
&-xt) - 

C, (X, ) 
(1.15) 

The terminology connected will become clear once we discuss the graphical 
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interpretation of a perturbative expansion of ther Greens functions. 

If we now studV the Legendre transformation to conjugate variables (in the 

Hamiltonian mechanics sense (Goldstein, 1980)) defined bV 

F 1'ý ý+F 1731 =ýe L-2 w -ý- kA LX)l ýý) 

where 

S-SUL) 

we find that rul Is the generating functional for the vertex functions, 

r M(XI 
---, XN), the matrix inverse of the connected Greens function (again, the 

description vertexfunction will be clarified by our discussion of the Feynman 

graph expansion). The functional derivatives in this case are taken with 

respect to the variable ý, not J, -viz., 

(w) 

r (x) (1.18) 

To complete the list of functions we shall need to considerwhen we come 

to study renormallsation of a field theory, we must include Greens functions 

Involving composite operators, e. g., higher powers of the fields at a given 

point. We shall not need these in their full generality; for our purpose It will be 

sufficient to consider the Greens functions containing the ý2 operator, 

4 4(xi... 4i(x' 4t(j') (1.19) 
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In an analogous fashion to the preceeding definitions we can define a 

generating functional Z'[J, t) for the G (N, Pý by 

1ý -v ý ex pI -'A * EOy. L-J(ý *- -L, t +91 
(1.20) 

Then 

= Lm Illz-, k 

is the generating functional for the connected pieces of G (N, P), Gc (N, P) 
, and, 

similarly, the vertex functions-r (N, P) defined as 

(x I r* I )(w. IV = : ý*" r, I i, bi 
SO (1.22) 

are - generated by the functional r'(ý, tj defined through the Legendre 

transformation 

ý, kl -++ 
(1.23) 

Up to this point our discussion of correlation functions has been confined 

to real space. As the Hamiltonian is Invariant under a spatial translation the 

Greens functions Simplify if we transform to momentum space and study their 

Fourier transforms. The translational invarlance in, the real space 

representation then manifests Itself as an overall 'momentum conservation 

factor, 6(Eiki), multiplying the Fourier transformed Greens function. The Fourier 

transform of G (N)(Xl 
..., XN) Is defined as 
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Gý Ott; **3%, ) - 6p ki (1.24) 

and for the function G (N, P) 
. 
0(1, --., XN; Yl, ---, YP) we have 

,.;.. ý ceýg, 
(2106 

Similar expressions hold for the other functions described above. 

The foregoing are the exact integral expressions for the Greens functions, 

&c. Unfortunately, in all but the most trivial models, these integrals cannot be 

carried out explicitly. Therefore we must employ some approximation 

technique to provide ourselves with a systematic framework for the evaluation 

of any desired quantity. THis is provided by a perturbative expansion of the 

correlation functions about an exactly soluble quadratic form of the 

Hamiltonian, 'A. This approach Is the subject of the next section. 

13. - Perturbative Expansions In Field TheoEy 

As we remarked at the 'end of the previous section, the problem of 

evaluating Greens functions exactly In any non-trivial case is intractable. We 

must therefore turn to approximations, such as perturbation theory. The use 

of this technique in classical mechanics dates back to the time of Newton, and 

the principles apply equally to the present discussion. 

Perturbation theory relies on the existence of an Hamiltonian, Ij 
Op which 

differs from the Hamiltonian of the system being studied, 1j, only "slightly", but 



for which we can perform the integrals enumerated in section 1.2 exactly. The 

physical system functions are then obtained as power series in the difference 

(9 90). In this section we %iiiII'discuss the resulting series and " use th Ie 

Hamiltonian, 

t2 Vi (1.26) 

with I g. "small", as an illustrative example. '' I In this'case the 'exactly soluble' 1ý0 

Is 

cof + -L qI 
f 

(127) 

the so-called Gaussian, or free, theory. 

Con'sider the genieral case 

VWJ 

where 'we' shall perturb In the potential V(fl. ' It maV be shown (Amit, 1984; 

Ramond, 1981) that ihe 
partition function -of section (1.1) c, an be'-'written in the 

form 

V(G 4 
41 

1 

ýO 
-T(x) 

1.11 J. L, ýX. J) 7L P_ 
(1.29) 

where 

Lq-cx-jj 

GT P- 
f 

-I- VA: ot (1.30) 
Y(A 
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In this expression. -the momentum integral has a cut-off, A, at high p values 

corresponding to the maximum allowed p-vector in the Fourier decomposition 

of Go. This cut-off arises naturally when we consider the continuous field 

description of critical phenomena in a lattice system, where A is proportional 

to the inverse lattice spacing. 

The perturbation expansion is generated by expanding the first exponential 

in (1.30) as a Taylor series in the potential ýnd acting on the second 

exponential term with Ahe resulting functional derivatives. Since the Greens 

functions G (N ) are generated by taking N functional derivatives of Z(J) with 

respect to the source, J, and then setting J equal to zero, for the result to be 

non-zero the derivatives must group in pairs (in all possible combinations). 

Corresponding to each pair of derivatives, 

c * (1.31) 

a factor of GO(x-y) will be present in the expansion. This correspondence led 

Feynman to introduce a. graphical representation of the series In powers of g, 

which has proved invaluable in the, application 
I 
of perturbation expansions. in 

Field Theory. - The denominator, Z(O), in (1.29) acts to cancel all graphs not 

topologically connected to an exterior coordinate, i. e., one appearing in 

G(N)(X1 0 .... XN). The rules for constructing the graphs are: 

11 



draw a point for every external coordinate and every 

interaction term, label each pcrint by its coordinate 

- for all Go(x-y) present draw a line connecting the point 

labelled by x to the point labelled by y. 

To construct the term in the algebraic series from a Feynman graph the 

following rules are used (using (1.26) as an illustration) 

1. fof each internal point include a factor of -g/41 

2. for each line joining x to y include a factor of Go(x-y) 

, 3. integrate over all internal coordinates 

4. multipIV bV 1/nl where n is the order of g in the expansion 

5. multiply by the number of ways of constructing the graph 

of given topology. 

The above is for an expansion in real space - the expa nslon of the 

momentum space-Greens functions can be similarly represented as a graphical 

series. In this case each line corresponds to a factor of 

e -,, V"Ný. (1.32) 

and the overall momentum is conserved. The rules for constructing and 

computing the contribution of a graph to the expansion of G(N)(p 1, -ý--PN) are as 

follows .- we consider here 
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vw ýý, T- - ý,, +ý (1.33) 

1. draw N external lines 

2. distribute the N external momenta, pi , about the Wexternal 

, lines (NI possible waVs of carrVing this step out) "-I 

3. for each of the nr vertices of the interaction draw a 

point at which r lines meet 

4. join all lines in the graphs in pairs; label each internal line 

with a momentum qi in such a, way as to conserve 

momentum at each vertex 

5., for each vertex, of tVpe r include-A 4actor Xr/rl 

6. for each line with momentum k include a factor of GO(k) 

7. integrate over all internal momenta qj, fd d qj/(2 Td) 

8. multiply by 1/(nlln2l nI) 

9. multiply by the number of ways of constructing the graph 

of given topology. 

The above Feynman , rules summarise the procedure for calculating 

G(N)(p, ... PN) to all orders in perturbation- theory. 

If we study the graphical expansions of the other quantities defined in the 

previous section we discover that they fall into topologically distinct sets - 

hence the names associated with them, e. g, connected functions. The 
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topologicalIV expansion of Gc PN) contains onIv graphs which are 

connected. One particle irreducible (1PI) graphs are defined as those which 

cannot be separated into two disparate pieces bV cutting one internal line. 

The vertex functions, r (N)(p 
1, ---, PN), are defined as minus the sum of all 1PI 

graphs with' N external legs. Note that bV definition the external propagators 

GO(pi) are not included in the vertex function. When we consider Greens 

functions involving the composite operator, ý2, the above rules ard unchanged 

if we consider the term containing ý2 as an interaction vertex with 

momentum conserved on the two incoming lines. An overall factor of (71)p is 

Included in the rules for the computation of a graph having P ý2 insertions in 

its structure. Note here that there. is no overall factor of 1/Pl as one might 

expect from'having P vertices. 

The graphical expansion. as a power series in the coupling, constants can 

be reformulated as a systematic expansion in the number of closed loops the 

graphs contain. Th'is is the technique we shall adopt throughout this thesis, 

and gives rise to the classification of approximations as 'n th-loop order"; this 

corresponds to an expansion about the classical theory. The lowest level, the 

tree approximation, corresponds to the mean field theory, first Introduced by 

Weiss (1932), which neglects the effect of fluctuations and at this level we can 

recover the mean-fieWvalues of the critical exponents and amplitudes. 

As an example of a calculation using the loop expansion we shall calculate 

the magnetic susceptibility to one-loop using the Hamiltonia. n of (1.26). Now 

Lo 

(1.34) 

=S jý -ý <( e(3) -4 ev> )( 410) -4e 0), »'> (1.35) 
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<. (Vo) (1.36) 

M-1 (1.37) 

so we must calculate r(2)(q=O) to one loop order. ApplVing the rules given 

above we obtain 

(1.38) 

t ctl k = MO -6. L 

Ar MI 
lkl, c 

A second-order phase transition is signalled by the divergence of the 

susceptibility as the temperature, T, approaches the critical temperature, Tc. 

As we remarked earlier, In section (11.2), the temperature dependence enters 

the continuous field description *through the parameter mo we therefore 

solve X-1 -0 for mo to obtain the critical value, mc, at which the transition 

occurs. To lowest order this gives 

je (1.40) 

Introducing the reduced temperature, -rot defined through 

PAC, 

we have, again to lowest order, 

= -t -IA (1.42) 
OýýOf kz 

lkl, (A 
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The integral in (1.42) converges for any dimension d>4, but for d<4 it has 

an infra-red (k-P-0) divergence. The dimension at which these infra-red 

singularities appear in thermodynamic quantities calculated in field theory is 

known, as the upper-critical dimension, denoted d.. The singularitles persist to 

all orders In the loop expansion and must be removed by the process of 

renormallsation, the topic of the next section. Above dc the integrals are 

convergent and the mean-field results are recovered; for example, (1.42) 

implies that'foi d>4, X ýr T-1, or y'-ý 1 

(The above manipulations are only defined if the integral has a 

high-momentum cut-off. This is provided in statistical physics by the inherent 

upper limit, A, reflecting the existence of an underlying physical length scale, 

usually the lattice spacing. In quantum field theory the Integrals are also 

ultra-violet divergent) 

We shall now turn our attentions to the handling of the divergences for 

dimensions less than the upper critic*al dimension., 

1.4. Renormalisation 

At the end of section (1.3) we encountered -one- of the main problems 

associated with perturbation expansions in the co 
I 
ntinuous field Id escription of 

critical phenomena: 

Thankfully these divergences ma Iy be handled In a 

systematic manner by redefining the parameters In the theory to absorb the 

divergences and obtain finite results. In studying phase transition physics the 

interesting limit Is mo-b-O with A fixed - In quantum field theory the limit. 

considered is the "continuum limit", Le., A-1-cD. In the latter case the Integrals 

considered at the end of section (1.3) suffer from ultra-violet divergences for 

a 
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any dimension d>2 (the lower critical dimension). However, if we define 

Cc f+ 
(1.43) 

we obtain 

(1.44) 

which is, finite as A-+co; - this, is an example - of, mass renormalisation. -The 

infinity has been absorbed in a redefinition of our original parameter, mo, 

which is related to our new, arbitrarV parameter m bv 

2, %o 
yvý 

In the case of critical phenomena the integrals converge in the ultra-violet 

and the consequent redefinition of mo is unnecessary. However, renormalising 

the theory in such a way that the limit A-1-co Is finite for all d<dc provides us 

with a natural description of the approach to a phase transition (and a 

I 
computationally effective method of calculation (Br6zin at al, 1974)). The 

presence of a short-distance cut-off is unimportant near the transition, where 

the physics is dominated by large length scale, fluctuations, and taking A-*(* 

introduces corrections which are negligible in the critical region. The cut-off, 

A, on the momentum integral Is one method of regularising the theory, that is, 

a method by which we can define a finite expression corresponding to an 

infinite Feynman integral in such -a way that there exists a well-defined 

limiting procedure which recovers the original value of the Feynman integral In 

its domain of definition. The regularisation -procedure we shall adopt is the 
6. 

dimensional regularisation scheme of I Hooft and Veltman (1972). This 
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consists of analVtIcalIV continuing the integrals in the number of space 

dimensions bV partial integration of the integrand (Ramond, 1981). SimilarIV, 

m-anV (an infinite number in theorVI) methods of renormalising a field theorV 

are possible. The approach we use is again to follow I Hooft and Veltman 

and adopt the minimal subtraction scheme, tied to dimensional regularisation. 

This leads naturalIV to the e-expansion, which we discuss below. For details 

of this method we refer the reader to 't Hooft and Veltman (1972) and I Hooft 

(1973); in the context of critical phenomena the technique is described in 

Lawrie (1975) and Amit (1984). We shall only sketch the main Ideas here. 

In the study of critical phenomena we are interested in the infra-red 

Pehaviour of our theory, i. e., the low momentum region. In the c-expansion 

the infra-red divergences in the Feynman diagrams are forced to appear as 

logarithms, through an expansion such as 

E 
LA 

Xý( (1.46) 
2. i 

where e dc d. This necessitates a double expansion, in the number of 

loops and in C, to study the critical behaviour of the model. 

To handle the ultra-violet divergences in the theory the I Hooft and 

Veltman scheme sets the momentum cut-off to infinitV, and calculates the 

resulting integrals in dimensional regularisation, analVticalIV continuing In E. 

The ultra-violet divergences then appear as poles in C and the 

renormalisation is achieved bV defining new, renormalised parameters of the 

theory in such'a way that the Greens functions at criticality are finite as e-1-0, 

i. e., we 'remove the poles in V. The details of this are to be found In Amit 

(1984) and -Ramond (1981); in Chapters 2 and 3 of this thesis the process Is 

illuminated by explicit calculation. 
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To render the vertex functions r (N) finite 'in the limit C-1-0 we must 

renormalise the coupling constant and the wavefunction by defining new 

quantities 

ig =p 2,1 F-) (1.47) 

and 

g2 

such that 

(1.48) 

Nil 
7ý 

has a finite E-1-0 limit. Here 4 is an arbitrarV momentum scale chosen to make 

9R dimensionless. The functions A, and Zý are fixed by demanding that they 

minimally subtract off the poles in e. A further renormalisatiOn Is necessary 

to render finite the vertex functions r (N, P) 
. This is achieved by renormallsing 

the temperature via the definition 

(1.50) 

and demanding that 

14 r 7ýt 

has a finite c-1-0 limit. Again, this is carried out by dhoosing Zý 2 to minimally 

subtract off the poles in e. The vertex function r(0,2) ' requires an IaI dditional, 
4 

additive renormalisation. 

19 



These definitions are sufficient to render all the quantities calculated in, our 

theory finite outside the critical region if we define a renormalised field, HR, a 

renormalised source, JR, and a renormallsed magnetisation, MR, bV 

IHO (1.52) 

t 
-1 - -lit 

.Mg. 
= /'k 1 Ze 

and 

To (1.54) 

The method of approach that was adopted for the calculations detailed 

later in this thesis was to calculate the desired function in the original, bare 

theory and to substitute in the renormallsed values at the end of the 

calculation, knowing that we are guaranteed finite results, thanks to the work' 

of I Hooft and Veltman. 

In the next section we turn our attention to the specific area of random 

systems In critical phenomena and give a brief outline of this wide ranging 

topic of current research. 

1.5. Random Systems 

In the study of random systems we are primarily interested in the effect on 

the critical behaviour of a system of introducing disorder. This disorder is 

described by a wide variety of terms (disorder, amorphous, defects, noise) 

depending on the context of the discussion and in recent years the subject 
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area has generated a vast amount of literature. The motivation behind 

studying disordered systems"Is the belief that they are a closer approximation i 

to the real, physical systems than homogeneous, perf ect - crystals. -, A. review of 

earlier work in the field maV be found in Balian -et al--(1979), whilst 

Stinchcombe (in Domb and Lebowitz, 1983) gives an overview of the theorV 

pertaining to dilute magnetism, mainly from the real-space viewpPint. This 

latter article contains a comprehensive set of references in the general, field of 

dilute magnetism. The brief resumd comprising this section will concentrate 

on the static, properties of substitutionally diluted magnets since this is mott 

relevant to the current'work. 41- 

The term diluted magnet is used here to refer to a magnetic system 

diluted with non-magnetic ions... We , consider the case of substitutional 

disorder in whiph a_ certain fraction, (1 - p), of, the magnetic ions are replaced 

by non-magnetic atoms. This disorder may be classified as quenched or 

annealed;. in the former, the configurational averages over the random 

variables are --independent of the thermal averages,. and in the latter, the 

disorder variables are in thermal equilibrium with the other degrees of 

freedom in the system. Substitutional disorder can also be of either site or 

bond type In site-disorder the randomness Is associated with the atoms 

(site-dilution) whereas in the case of bond-disord6r the randomness Is 

associated with the exchange constants between the ions (bond-dilution). The 

expectation is that the two types of randomness lie in the same universality 

class. Here we are interested in the first case, that of site-dilution. 

In quenched, dilute maggets, in addition to the thermodynamic phase 

transitions which can occur, there also exists the purely geometric transition 

. 
associated with percolation (see Ahe article by Stinchcombe and references 
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therein). For concentrations of magnetic Ions, p, less than a threshold value, 

Pc, a phase transition cannot occur because there is no infinite cluster of 

connected ions to support long-range order, However, for concentrations 

P>pc this infinite cluster exists and long-range ordering can occur. The 

dependence on p of the critical temperature at which this ordering occurs is 

shown schematically in Figure 1-1. Since the transition is of second order in 

simple'magnets the thermal behaviour at criticality is characterlsed by a set of 

critical 'exponents. These are expected to be the same as for the pure system 

if the pure system specific heat exponent, a, Is negative, and may be modified 

otherwise (Harris, 1974). This is known as the Harris criterion and can be 

stated for the Ising model in the language of the renormalisation group as 

"The Ising fixed point is stable if the specific heat exponent 

of the corresponding Ising model Is negativew 

(Amit, 1984) 

This has been proved to all orders In the c-expansion by Jug and Carneiro 

(1982). 

The three-dimensional (pure) Ising model has a>O so the dilution may 

modify the transition and lead to new exponent values. Khmel'nitski (1975) 

summed the parquet diagrams for the, random Ising model and obtained a new 

random fixed point of o(C1/2 ). So far, this Is the only example of an O(Cl/2 ) 

fixed point to be found; it arises due to the B functions being proportional at 

lowest order (given a suitable definition of the coupling I -constants). 
Jayaprakash and Katz (1922) calculated higher order corrections to the 

functions and proved the stability of this fixed point, which is therefore 

expected to characterise the critical behaviour of the random Ising model. 
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Figure 1-1: Schematic phase diagram of a dilute magnet 
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These authors calculated the exponents , il and v to second order in an 

C1/2 -expansion and Newlove (1983) has derived the first order results for the 

universal amplitude ratios at criticality. This latter calculation is. extended to 

two-loops for the susceptibility amolitude ratio in the present work. 1 .1 

1.6. Research Projects 

The, remainder of this thesis contains a study of the, critical behaviour of a 

particular random system, the, random site-diluted Ising model, using the 

techniques of field theory detailed in this introduction and a Monte Carlo 

simulation on a highly parallel computer. 

Neutron scattering experiments to study the critical behaviour of a 

site diluted Ising magnet were carried out by Birgeneau et al (1983). Results 

for the critical amplitude ratios were markedly different from experiments on 

the pure system; this motivated Newlove (1983) to periorm a one-loop 

e-expansion for these quantities. Again, these analytic results differed 

significantly from the results of a one-loop treatment for the pure case (Brdzin 

et al 1974). In Chapter 2 of this thesis we derive a two loop expression for 

the susceptibility amplitude ratio at criticality by a field theoretic calculation of 

the equation of state from the replicated Hamiltonian. This Is achieved by 

expanding the transverse propagator as a power series in n, the number of 

repliCas, about the longitudinal propagator. This enables us to identify and 

discard earIV on In the calculation terms which vanish in the limit n-1-0. 

As was initialIV pointed out bV Grinstein, Ma and Mazenko (197.7), the 

introduction of dilution into the Ising model gives rise to a new, static 

Correlation function, Cls)(q), because of the fluctuations in the local, quenched 

magnetisation. Aharony and Pelcovits (1985) showed that this function has 
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important consequences for the interpretation of neutron scattering 

measurements of the susceptibility amplitude ratio, - and calculated the 

correction to lowest order. In Chapter 3 we detail a field theory ca Iculation of 

C(')(q-0) to obtain the next order term in the e-expansion, by employing an 

extension of the replica trick to embrace two sets of replica spins. 

Chapter 4 reports the details of a Monte Carlo simulation of the 

site-diluted Ising model, designed to study the effects of dilution on the 

critical behaviour of the system. A study of the scaling properties, of 

sub-block magnetisations, as suggested by Binder (1981), is used to extract 

the critical temperature and to obtain estimates for the critical exponents. The 

method is applied initially to the pure Ising model for verification and then the 

diluted case is, treated. The observed- limiting behaviour of the cumulant 

studied is discussed with reference to the influence of the competing fixed 

points In the model. 
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CHAFrER 2 

SUSCEPTIBILITY AMPLITUDE RATIOS IN THE RANDOM ISING MODEL 

2.1. Introduction 

In this chapter we shall be concerned with the effect of the introduction of 

quenched impurities on the critical amplitudes of a system. Our attention will 

be confined to the case of site-dilution, 'where the sites of a regular lattice are - 

occupied by a magnetic Ion with probability p, and a non-magnetic ion with 

probability 1-p. In such a case, a phase transition is only possible if there 

exists an infinite, connected cluster of spins. Below a critical value of the 
q 

b 

concentration, say pc, there Is no s. uch ýiuster and the critical temperature, 

Tc(p), Is zero, whilst for p>pc, Tc(p) Is greater than zero and a phase transition 

may occur. This is the purely geometric phenomenon of percolation. The 

reader Is referred to the article by Shante and Kirkpatrick (1971) for a review. 

The remainder of this chapter is laid out in the following waV. In section 

2.2 we describe the random Ising model and some experimental results on a 

realisation of it In nature, Fel-xZnxF2 (Birgeneau et a/, 1976). In section 2.3 we 

Introduce the Replica Trick for calculating averages over the random variables 

in the model. The universal form of the equation of state is discussed in 

section 2.4. Section 2.5 describes a one-loop calculation of the equation of 

state from which we extract a value for the universal ratio of susceptibility 

amplitudes. This section is included as motivation for a two-loop calculation 

of the amplitude ratio and to introduce the tdchniques which are essential in 

the higher order calculation which is presented in section 2.6. Conclusions are 

contained in section 2.7., ' 
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22- The Random Ising Model 

In this section we describe a simple model exhibiting a phase transition 

and discuss the effects of the addition of quenched impurities on the critical 

behaviour of the system. The model we shall consider is the random, 

site-diluted Ising model. 

In the Ising model magnetic ions occupy the sites of a square lattice and 

interact through nearest-neighbour interactions. The Hamiltonian describing 

the system is 

kr 

where si Is the spin at site I, Jjj - J. is the interaction strength between sites I 

and j, and the summation Is over nearest neighbouring sites. The model has 

been- extensively studied and 'an exact solution is known in two dimensions 

(Onsager, 1944). 

Site-dilution is 
jintroduced 

by associating an occupation number, pi, with 

the site i, where pi-1 if the site contains a magnetic ion (occupied") and pi-O 

if the sites contains a non-magnetic impurity ("vacant"). The probability of any 

given site being occupied is P, 041ý13"*-*`!, independent of the state of all other 

sites and the occupation numbers have a distribution described by the 

function 

+ (2.2) 

This is the random, site-diluted Ising model. The Hamiltonian for this system 

is 
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/314UpoS-3)=--LZ (2.3) 

* and the partition function is given bV 

7; fj) 
f 

TT. a3i. P, (2.4) 

The quenched impurity average is taken over the free energy of the system 

% 

F Tr ýA (2.5) 
/3 

f 

#- 

where the bar indicates an average with respect to the impurity distribution. In 

the following we have absorbed the factor of into a redefinition of the 

coupling in the Hamiltonian, (2.3). 

The partition function maV be rewritten in terms of a continuous field 

description'bV use of the Hubbard-Stratonovich identitv (see section 1.2) The 

resulting partition function is 

-ýU0. Ili-SID -Z (V/) = el j2.6) 

with Hamiltonian 

14 » Jýx 1 
-L ýyý (X)ý +Lr. ýt ), 2. Z 

+1 lý(X) e txý - -X. (X) ý (X) 1 (2.7) Z 

where the spins in the lattice description are replaced by the continuous field 

Vx) Is a random field with probability distribution function satisfying 

f lý (x) iý(. 2e) P(v-) Dlý =A9 (x- x') (2.8) 
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and we have we Introduced the source term Jjx) which couples linearly to ý. 

This was first written down by Grinstein and Luther (1976). The temperature 

dependence enters through the varfable ro-ro(T). The field-theoretic description 

was shown to have an order w/c fixed point by Khmel'nitski (1975), the stability 

of which was proved by Jayaprakash and Katz (1982). 

To calculate quantities In this theory we have to perform the impurity 

average over the free energV. The replica formalism allows us to carrV out 

this step. 

23. The Replica Trick 

In systems containing quenched impurities, the mathemalically non-trivial 

impurity average Is taken 'over the free energy, F- -kT In Z. In the case of a 

Gaussian distribution of impurities this average can be performed explicitly by 

emploVing the replica, or n=O, trick (Grinstein and Luther, 1976; Edwards and 

Anderson, 1975; EmerV, 1975). 

The replica trick is based on the identity 

(2.9) 

and the quenched ImpuritV average over the free energV becomes 
I 

F 1-el = 
lÄýým i- 

(2.10) 

(2.11) 

assuming we can swap the orders of the limit and integration. The validity of 
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this has never been placed on a sound mathematical footing and it has been 

shown to fail to reproduce the correct results in some ifistances (Verbaarschot 

and Zirnbauer, 1985). Our model does not seem to have any -of the features 

which have been postulated for. the breakdown of the replica trick. 

If we assume a Gaussian probability distribution for 

(X) 
CU. 

A) Wit (2.12) 

where we will let Wo-co at the end, then POP) satisfies. 

P(V) 
(2.13) 

P DV 
(2.14) 

(2.15) 

and 

F0, -x. 1) 4P W%0 ISO% 2t oU 12 OV. t 

VnA 
+ 

(2.16) 

where uo 

The Hamiltonian may be written more compactly In vector notation as, 

ýC tx 
-ZL V? + Jlz 4, 2. z-7, CV (g)" 

(2.17) 

with the definitions 
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(2.18) 

OW) e(x) $(-I II 
n 

X)) IL 
IE 

(7ý( -. 6 

(v 

(2.20) 

In this form it is recognisable as being the Hamiltonian of an n-component 

spin with a cubic anisotropy term (see Amit (1984) for a general discussion). 

The calculations detailed in the remainder of this thesis use this Hamiltonian 

as their starting point. 

2.4. Universal Form of the equation of State 

The renormallsation of a theory can be carried out in many different 

schemes as was indicated in section 1.4. However, since the different 

renormallsed theories all describe the same underlying physical model they 

must be related by a group of, transformations. The expression of this group 

of transformations In differential equation form is embedded In the 

renormalisation group equations. These describe how vertex functions behave 

under a change In the scale of the momenta. At a fixed point in coupling 

constant space, where the functions are zero, scaling behaviour of the 

Greens functions Is found, leading to identification of the universal critical 

exponents, q and v, and'hence, by the scaling laws, all the other exponents of 

the theorV. 

As the renormalised equation of state is a surn. of renormallsed vertex 

functions of the same type, it immediately follows that the equation of state 

satisfies a renormalisation group equation, viz., 
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+ /3(a) 
1- 

-L -- 'ý t 1114(t, M'P' 0 (2.21) 
ZL 

where H is the external field, t is the reduced temperature, M, the 

magnetisation, 11, the momentum scale and g, the coupling constant. This' can 

be solved bV the method of characteristics and at the fixed point has the 

solution 

M1/L 1A (2.22) 

where we have'written, yý(g) - 'n' and yý2(g*)ý v-1 2. - Dimensional 

anaIVsIs allows us to write this in a form in'which the function h'depends on1V 

on dimensionless ratios and all the dimensional behaviour Is explicitIV 

extracted as a prefactor. Introducing p as a momentum scale we obtain 

A (2.23) P 

and choosing p such that the first factor in h Is 1 we are lead to the equation 

st+2 2 L'w 
(2.24) 

Comparing with the scaling form of the equation of state conjectured bV 

Widom (1965) 

(2.25) 

we can make the identifications 
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ý =, 
a* 2-, 1 (2.26) 

01 -1* eL * 

(2.27) 

0 

As the general form of the renormalisation group equation in the critical 

region admits only two independent, universal critical exponents, it follows 

that there are only two Independent amplitudes in the theory. However, these 

are non-universal, although it. -Is possible to construct universal combinations 

of them. The universal combinations of main, interest are given in Amit (1984). 

-In the remainder of this chapter we shall employ the techniques described 

In outline in Chapter 1 to calculate the susceptibility amplitude ratio in the 

epsilon expansion to order two-loops. 

In' the next section we calculate the equation of state, and hence the 

susceptibility amplitude ratio, C+/C-, to one-loop. 

2.5. One-Loop expansion of Susceptibility Amplitude Ratio J 

In this section we calculate the equation of state to one-loop order In the- 

e-expansion using a technique due to Br6zin, Wallace and Wilson (1972). 

From the renormallsed equation of state the universal ratio of susceptibility 

amplitudes above and below Tc can be derived in a very efficient manner. 

The approach is to shift the value of the field ý by its expectation value in 

the ordered state and perform the perturbation expansion in terms of the new, 

shifted field 
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ý=0- z4; > (2.28) 

(Wallace, in Domb and Green, 1976). This removes the so-called "tadpole" 

diagrams from the expansion. The equation of state is then defined by the 

condition 

(2.29) 

The first stage is therefore to find the expectation value of the field ý 

below Tc bv solving the Euler-Lagrange equations simultaneousIV for all n 

replicas. Using this procedure the ordered phase Is found to be 

(2.30) 

i. e., all the replica fields have the same expectation value. This should not be 

surprising as we have a ? er,, ý6ý symmetry amongst the replicas In the 

Lagranglan. If we had assumed that one replica had expectation value MO and 

all, others zero, we would have found 'that the arguments of some of the 

logarithms in the calculation were negative; this thermodynamic Instability Is 

traceable to the coupling constant, uO = -3A, being negative. 

In the random Ising Hamiltonian we'therefore rotate the coordinate system 

until the 1 direction lies along the body diagonal of the n-dimensional 

hypercube and then shift the field in the 1 direction by M. to obtain new fields 

0, such that 

vi ý-(f. * n` M. ) g, t. r, 1 f. 1 (2.31) 
ýz11 
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(2.32) 

where the Jej) form a complete, orthonormal set. The (eil satisfv 

yi (2.33) 

e-, e", (2.34) 9L -. 1 o. - 
'i 

; LAI e, 0 (2.35) 

A 
e -t eL (2.36) 

and are in fact the set of vectors which define the n vertices of an 

hypertetrahedron In n-1 dimensional space (Wallace and Zia, 1975). Defining 

Yýh (2.3 7) 

(2.38) 

the Hamiltonian In the presence of a field Ho 

It%!! q 1- 4, (2.39) 

becomes in terms of the shifted fields 0 

S 
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7t Lis %1 I% 

+ (1;. -* ýuv%Tf. + jv. ýý. ) -t jk6 -- J4., % -Lv t'ý kL t4. - vlýk 

L 

Y% T7, * 

121 

'IVA +4 
W"%T (2.40) 1-4 k. L 

where 

CIL Z eýeL. e -. ý.,,, - tAt 
(2.41) 

A 
VL 0, VL 

is 
qZ 4e, ee P- L (2.42) 

419,0.11 . 1, k 

and we have dropped irrelevant constant terms. This equation is identical to 

Aharony (1974) apart from a rescaling of MO, HO, uO and vo. The equation of 

state now follows from the requirement that <011> -0 (the relations 

<0j> - 0,1 - 2,..., n are trivially satisfied due to the orthonormality of the 

basis vectors and the definitions of the tensors. aijk and bijkl 

Perusal of the above Hamiltonian reveals the presence of two bare masses 

UG (2.43) 

rT J-v 
Ia u6n r-d (A-% -JAI 44all-%w6k) (2.44) 

and therefore two propagators 

r-l-, 
IA 

<+ 
rT 

(2.45) 

(2.46) 
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In the model. For later convenience we define the variable b by the equation 

(2.47) 

We proceed with the renormalisation using the techniques of dimensional 

regularisation and minimal subtraction developed by I Hooft and Veltman 

(1972). It is sufficient to renormalise the theory above Tc to obtain finite 

Greens functions in the ordered phase (Amit, 1984).. The renormalisation is 

further simplified'by noting that any graph containing a first order self-energy 

I insertion vanishes at criticality, since integration of the loop momentum. yields 

a factor of the reduced temperature multiplying the graph. 

The graphs contributing to <011> =0 to one loop are given In Figure 2-1. 

To zisroth order we have 

kýa + -L U. n M". IV. te ) go ý 
40 16 

(2.48) 

(Tcr. ) (2.49) 

To lowest order we can just replace the bare quantities (2.49) by their 

renormallsed counterparts. to obtain a renormalised equation of state, viz., 

he f (2.50) 

where the subscriPt R denotes a dimensionless, renormalised, quantity. All the 

dimensional dependence has, been extracted using dimensional analysis and is 
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Figure 2-1: Graphs in expansion of <ý,, > to one loop 
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explicitly shown In the momentum scale prefactor. 

We now carry out the prescription outlined in section 1.4 to calculate a 

renormallsed equation r of state to one loop level. Above Tc the Hamiltonian 

may be written 

.11L )-ý Wo SLjkL "I- VORý, L) tz ýj ý,, 4L. at 

where the tensors Sijkl and Fijkl are defined as 

(2.52) 

(2.53) 

The Feynmaq diagrams thus have two types of vertex present and a tensorial 

factor associated with each graph - by this we mean that the Internal replica 

Indices In the graphs are summed over. We denote an S vertex as a circle 

and an F vertex as a square. 

Mass Renormalisation 

Above Tc the two point vertex function Is given by the graphs In 

Figure 2-2. These give, for the bare quantity 

+bo * Ak 
(1) 1%f 

Ot 4 
Oý 41 (2.54) 

M)t(73P44t2) 

Ud, V-) + O(E) (2-55) dS 

where Sd Is the area of the unit sphere in d-dimenslons. In the rest of this 

d chapter the factors of Sd /(21T. ) will be omitted for ease of writing - -they are 
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Figure 2-2: One loop graphs, with weights, for the two point function 
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easily recovered as a factor for every loop. We therefore define (minimally) a 

renormalised temperature by 

tzI bt -- iý; II- -L ( -k-441) 'A. -t %4) 1. 

(2.56) 

1) "it V101 (2.57) 

since to this order u u0ji-C UR and v -vog-C VR Then-' 

IL (2.58) 

Wave function Renormalisation 

To render r (2) finite at four dimensloný the two point vertex function r (2) IS' R 

multiplied by the, wave function renormalisation constant 4 As we shall see 

In the next sectiýn, to order one loop, Zý-`I, This Is a consequence of the 

only one loop diagram contributing to r (2) being proportional to the reduced b 

temperature and hence vanishing at criticality. 

Coupling Constant Renormalisation 

To obtain finite Greens functions we must also renormallse the coupling 

constants In the theory. This is achieved by imposing the condition that 

C (41 % i4 
(2.59) 
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must have a finite limit as d-)-4. As we have remarked above, wave function 

renormalisation is a two-loop effect and therefore at this one-loop level it Is 

sufficient to demand that a renormalisation of the coupling constants (and 

temperature) removes the poles in e in-r (4). At one loop the graphs which b 

contribute to r (4) are shown in Figure 2-3. It Is easily checked that on setting b 

n 1, uO =0 and Fijkl '0 1 one recovers the graphs of an ordinary ý4 theory. 

A second check on the factors listed IS to Set Yo 0, Sijkl =1 and We obtain 

the results appropriate to an O(n) symmetric, bosonic field theory. Finally, 

setting Uo = Vc ý 9, Siikl - Fijkl ý1 and dividing by the number of graphs of a 

given topology, the ý4 results are once more recovered. These checks 

provide Important confirmation of the correctness of the Intermediate stages 

in the calculation, over and above the inbuilt checks of the method of minimal 

subtraction allied to dimensional regularisation. 

Collecting the factors together, the bare four-point function Is given by 

(441 
la f1V 

bait- 

6 (2.60) 
M (k. Kil 

where the Integral l(k) is 

iL L(k, %] 
(2.61) 

in which q and k are dimensionless, and 

LIL) =. 
ýx 

6% 1 %(1- Z) lei (2.62) 

We now expand u and v as double power series In the renormallsed couplings 
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Figure 2-3: One loop graphs, with weights, for the four point function 

43 



u2v[(n+4)S+4F]/12 

2 u v[(n+4)S+4F]/12 

3V3F 

3uv2 

x 

U2V[2S+(n+6)FI/3 

u 2v[(n+4)S+4F]/12 

U3 (n 2 +6n+20)S/36 

UV2(S+2F) 

Figure 2-3 (continued) 
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UR and vR, 

Lk 
P. AA'jt ýo, UILva. (2.63) 

IL Va C, -fit e- "OK 

(2.64) 

substitute these Into r 14) and, demanding that the poles in' the integrals' are b 

minimalIV subtracted bV the coefficients In the expansions of u and v, leads to 

U- it t+i UOIK 
(2.65) 

V"' +I UKMK 
11C E (2.66) 

These series may be, inverted, order by order In perturbation, theory to give the 

renormalised couplings in terms of the bare, viz., 

tAlt z- tk LAý LAvr 
EE (2.67) 

VL 
2E F (2.68) 

Composite Field Renormalisation 

The final renormalisation to be performed Is that of the vertex function 

i. e., the two point function with one Insertion. The divergence b 

associated, with this quantitV persists after substituting in the renormallsed 

temperature and coupling constants and h. ence must be removed separateIV. 

This is achieved bV constructing a function 2ý 2 such that the expression 

9t4 4x a (2.69) 
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has a finite limit as d-+4. The graphs in the expansion of r (2,1) to order b 

one-loop are detailed in Figure 2-4. The resulting expression for r (2.1) to this b 

order is 

t- 4t1)IUt't& 
(2.70) 

The Integrals entering the loop expanslO'n of r1ll) are the same as ýhose In 

the expansion of r (4) but the symmetry and combinatoric factors associated 

with each graph are different. 

As before, we write 1ý2 as a power series in UR and VR with unknown 

coefficients 
-and 

demand that the poles In F_ in the vertex function are 

cancelled. The result Is 

m1 tyl+1) J- WR Z£ (2.71) 

We now have all the expressions necessary to render any Greens function 

finite In the limit d-1-4 at one-loop. The strategy we adopt is to calculate the 

required function as an expansion in terms of bare quantities and only at the 

end substitute in the renormallsed expressions, , knowing that we are 

guaranteed finite results as c4O. 

Normally at this stage the next step would be to straightforwardly calculate 

the integrals in the expansion of <; Dll> using the two distinct propagators 

involving the longitudinal and transverse masses then, after renormallsing the 

resulting expression, taking the n-*O limit. However, to enable us to generallse 

the method to two loops, more easily, we' will adopt a different approach and 

expand the transverse propagator as a Taylor series in n about the longitudinal 
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Figure 2-4: Graphs for r (2,1) to one loop 
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one. The advantage of this way of calculation is that we can identify terms of 

order n (which will vanish in the limit n-1-0) from the outset, and we only have 

cFne mass In the theory to contend with. The integrals involved in the two 

loop calculation become practical to do, due to this latter simplification (and 

other, more remarkable effectsl). As a calculational check, the conventional 

expansion method was carried through to one loop and was found to agree 

with our method to this, order. 

In the expansion of <011> the only diagram involving the transverse 

propagator at one-loop is the lowest one In Figure 2-1. The overall 

combinatorics are unchanged but the integral associated with the graph is 

, expanded as 

SA 

4- JUAW. 
1 

w: (2.72) 

The Integrals 

14 

-ý- rjj, ý 
and 

i 

ýý4: ý1-11 17 

(2.73) 

(2.74) 

can be represented diagramaticalIV as Figure 2-5, in which the notch on the 

propagator acts as an insertion at zero momenturn. It is equivalent to taking a 

derivative of t. he internal line with respect to the longitudinal mass - an 

obvious equivalence once one considers the general form of a Taylor series. 

Therefore, to this order, the equation of state is given bV 
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Figure 2-5: Diagrammatic representation of integrals in Taylor expansion 
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lic, (U. Y%+ lu. -t IV. ) 

(2.75) oclol) 

vk. U. V, ttt 
(2.76) 

where 

f 
10 (2.77) 

and 

-To (2.78) 
f 

ZS-14-0 

The integrals are easily evaluated and inserting the results into (2.76) leads to 

the expression 

Lia 
-L tj? - + (t, +j vrý) (3 v, 4 lt, 6) u, 'v, 

1`4 

(2.79) 
U. ril k-A Uc. .4V. ek A- ýL%4, v. t4L. 

The renormalised, spontaneous magnetisation is obtained by solving the 

equation H-0 perturbatively for T<Tc. Substituting In for the bare quantities In 

terms of - the ýý renormallsed expressions : we finally obtain a renormallsed 

equation of state to-one-loop, 

vali 3* +241t) (tit + t1k) I-A Nt IVIA40 

4, 

(2.80) 

as previously found by Newlove (1983). 
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Using the definition of the inverse susceptibility, 

(2.81), Al, 

and the equation for VRMR2 below Tc we have 

/A-1L bk * -L L3 v,, * Tut. ) t-n. L-x ýtL "-, R 0 

Act L-lit) U Ta -V 11uL) L- 1ý10 kAA L- ItL) 

L3 %rIL + 1AIL) 0 
(2.82) 

At the fixed point there are no corrections to scaling and we may theref6re 

match X-1 to the anticipated power law form to obtain the amplitude ratio 

C. 1, YL 
E 44L Om C- (2.83)- 

and the exponent 

VL 
S3) 

Oct) (2.84) 

This value of y Is in agreement with that obtained by Grinstein and Luther 

(1976). 

As was noted in section 2.4 the universal form of the equation of state 

may be obtained by rescaling HR, MR and tR and then imposing suitable 

normalisation conditions on these new fields (Amit, 1984; Aharony and 

Bruce, 1974). Rescaling the variables so they satisfy the normallsations 

0 
Kit (2.85) 

and 
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X= te =-1 ak Z0e 
ýg Z. (2.86) 

where 6-3+ o(c) and B=j+ý 5ý) 
1 /2 c 1/2 + O(C) the equation of state 

becomes y- f(x) where, 

s(%) =ý -i- x+ ý ý) ckx Im 1 ýM, i+ Ou) (2.87) 

From this can be obtained the other amplitude ratios for the specific heat and 

correlation length (Newfove, 1983). 

11 ý We have therefore obtained a renormalised equation of state In scaling 

form to one-loop, and extracted the susceptibility amplitude ratio to the same 

order. in the next section we extend the calculation to obtain the next'term In 

the c-expanslon of C+/C- 

2.6. Two-Loop expansion of SusceptibilitV Amplitude Ratio 

In the previous section we gave a complete description of a one-loop 

calculation of the equation of state. There are two motivations for proceedIng 

with a two-loop calculation of the susceptibility amplitude ratio, the one-loop 

term having been obtained In section 2.5 

- as we shall discuss in section 2.7 the o(e 1/2 ) term obtained 

from the one-loop equation comes In with the "wrong" sign, 

i. e., the one-loop result Is further from the experimental 

value than the tree approximation. It is relevant to ask 

whether or not this trend continues at higher order 
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- it is of inherent interest to explore the feasibility of the 

analytic calculation to this order. 

This latter point Is of non-trivial importance. Firstly, in general we would 

expect to obtain ' integrals within our expansions Involving non-trivial 

combinations of the two masses, r1l and rT, present in the Hamiltonian. 

However, expanding transverse propagators about the longitudinal one as a 

power series In n and then taking the n-1-0 limit leaves us with pure Ising-like 

diagrams. Secondly, we avoid the renormalisations of the full equation of state 

by directly calculating the amplitude ratio in the bare theory. Thirdly, one 

wouldý`expdct the finite parts of integrals (the difficult pieces to- evaluate) to - 

contribute to the result. 'Remarkably'. this is not so In this case'- all that Is 

required are the poles In two integrals. 'Finally, to obtain the fixed point to 

o(e) requires the 0-functions to be known to' three loops for the e 1/2 

expansion. These have been calculated by Jayaprakash and Katz (1982) In a 

different renormalisation scheme. We derive the o(e) values in our scheme by 

combining our two-loop 8-functions and their values of the exponents V and 

ýn to O(C3/2 ). The latter part of this work was carried out In collaboration with 

D. J. Wallace and the following equations summarise the details of this rather 

lengthy calculation. 

As before, our starting point is the Hamiltonian In terms of the shifted 

fields, 0, given In equation (2.40). From this Hamiltonian we obtain the 

equation of state as the graphical expansion of the equation <011> - 0; this 

reads, for the graphs with their weights, 
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00 VIUL rk-t) (uo+ -49 

I 
". H! 1 

1; n( uo 4 It St) 
01) n 

V, 
+ 1MVI-41 N4 -sum) AN-4) 0 2n ( 

n% 

--CO *+ -L (vi-1) (u, -,, 3 '*) LIA. + %2. 

-, t -L Lt4 --4 )( u* +1 'A ý 130 36 A --l. 

3(*4) +3 

I 

(2.88) 

I 
We now employ the same techniques as outlined in the previous section for 

the one-loop calculation and expand the transverse propagators In the 

diagrams as Taylor series In n about the longitudinal and then take the n-*O 

limit (after checking the cancellation of the n-1 and n-2 factors). The resulting 

form of the equation of state In graphical notation Is 

W. (lu. + 3va) V. V. 
to 40 

1 (24+ &u. v.. t +Iu. LLju. + I -. (b -I tý. to lir it 

'1 2-4uv. ý 9vt)v. ýL�* -ýD - -L U. (44.. +3vo) ill + 
ii 

0+ VA %K , 

7G 
UU. + iv, 0 16 ý --(DO -- -L tt. vt U. + a V. ) v. m! -CG 

+1 uo 3V0) va % 

(2.89) 

In the above equation a notched line denotes a zero momentum Insertion 

arising from the expansion of a transverse propagator, and the graphs 
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represent the Integrals arising in the FeVnman graph expansion, e. g., 

(2.90) 

(recall that b is the n-1-0 limit of r1j). The integrals appearing in the above 

equation'can be related to one another by differentiating lowest order terms 

with respect'to b. 'Using the resulting relations, collecting-'terms and explicitly 

extracting the factors of b from the integrals we obtain 

140 1t5 M C, 

%-1 1 -4 /Z 
ý3vl) + J- U-C-) L22 U. ' + 30 lqý) motic, li 

UO(4u*+3v. ) wml. ý V, 
Ice 

'Lý Vx-I -v 
3 J- ut 

-IL, (, - 4xý us Ckmet. 3%6) Vý 

j7I (2.91) 

where 

I. 0 
(2.92) 

TO 4A 
IX 

ff 

(2.93) 

(2.94) 

To obtain the susceptibility amplitude ratio from the above expression we 

go back to the definition of the susceptibility as X=(MaH). We require the 
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ratio 

SO 
(2.95) 

where the + (-) denotes t>O (t<O). The denominator is trivial and Is obtained 

from equation (2.91) by setting MO=O in the right-hand side. For the 

numerator, where tO<O, write HO=MOf(tO, MO). Then 

+ M" 
BN (2.96) 

(2.97) 

since f(to, M. )-O In the limit HO+O. The numeratoe can therefore be rewritten as 

JO L 
I 

Mý L%AA-t319L) t-24 - Ev,. ti, ) 

*IOU. v L -4 
- Nu 6) M. A -2. b -t Ev, tt 

. 4. -L -t 3b3q 4 10bkVt' 

(2 U, +IVO (I- F/2. ) k- 14 -EV, 
L 

sij u J LIu, -vlv. ) Lvcml. ) 

(t- EgL) tA. L2 U. + -1,1. ) (, VC,, r 
4 

S v. Lv. (2.98) 
% 

We now need to know b and vOM7 to first order. These are obtained by 

m solving the equation f-0 perturbatively for vo 0 giving ihe results 
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me (2.99) 61 

'SQ1 

Substituting these expressions back into equation (2.98) gives the numerator 

as 
E 

U. -t 1ý Lu. 
* V. - F- u tA. %)I 

-t GU,, J. 1 114)ýI- ZE) 

(*2 W. + 3%ý 

J- Eq, Gv, 6 3E L4uo+3%61)1 (2.101) 

and similarly 

t ibA«V-1-. tiw =- toi 1+1t; 't --9 (21t. "3V. 3) - -L fl(A %. + GW. v. -e W 6 48 0 

4. It Ci t4 3v.. 2 (L £12: ) \ 
(2.102) 

Remarkably, the finite integral, 12, 2 In the expansion of the equation of state 

below Tc has completely cancelled out. Expanding the ratio, R, and replacing 

-tos-t" in the numerator, to=-t in the denominator welind 
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c -fit -T 
(zt4. +3v. )( )- 1) - 

lz 

IA. + NJ q.. * v. (iu. +vA 

+ Lie. VV. + ts 
+1 %4 

: Z7 L L4.1 -4 tt. * (2.103) 

This expressloný must now be renormalised. We shall only introduce 

renormalised coupling constants as we will find that it is unnecessary to 

perform anV other renormalisations. The one-loop expressions required are 

t 44LVt 
SE IL (2.104) 

vit * 1L kAg V't (2.105) 

The integrals required are evaluated as (recall that we have absorbed faptors 

of angular Integration into a redefinition of the couplings) 

-0 =-1 

"LÖ c (2.106) 

0=- '3 (1+ S. oce)) (2.107) Tt 

i-e I 
Substituting these into the expression for R, we verifV that the poles In e 

cancel. Now, the fixed point values Of UR and VR obeV the relation 

4UR + 3VR 0 O(C)- - Knowing that the poles in R cancel we can simplifV the 

expression for, R bV setting 4UR +-3VR -0 in the terms of second order]n UR 

and VRl- knowing that corrections are of order three loops. This removes the 
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need to renormal'ise the couplings at, this, order. We also set t- C/2=1 since 

these terms are of higher order and are in fact guaranteed to cancel at the 

fixed point. The result of these manipulations is 

LAI. & (2. l'O 8) 

To obtain, the susceptibility amplitude ratio we must evaluate this 

expression at the fixed point. The values of u* and R v; are needed to o(e) for 

this to be carried out correctIV. However, because the expansion in this model 

Is in terms of e 1/2 
, to' obtain the fixed 'point values to o(e) requires the 

$-functions to be known to three loops. Jayaprakash and Katz (1982) have 

calculated the B-functions to this level but in a different renormallsatlon 

scheme from ours; $-functions are onIV universal up to the twoý-Ioop level. 

Using their results for V and Tj to o(e 3/2) it is possible to obtain the o(e) 

corrections to UR and V; in dimensional 
. 

regularisation by solving 

simult4neousIV the equations - 

IL 0 

pv 

where 

Y # 
9 

6W4t. 

(2.109) 

(2.110) 

(2.111) 

(2.112) 

As Ihe right-hand side of (2.112) involves a derivative with respect to the bare 

functions it is first of all necessary to invert the series for the renormallsed 
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couplings In terms of the bare. The result for is 

r-ý 'Lut-"t 'Lv' 2. UIN it 4 
%ý 

(2.113) 

(Note: this is independent of e, a result guaranteed by minimal subtraction 

with dimensional regularisation (Amit, 1984)) 

Writing 

II IlL lk 3 It 
IL -3( 

f- ýt + oce 
IK SO 

qp I sit) va m -Dz + Cý( E 

the o(c 3/2 ) terms In both B*,, =O and B, *, -O lead to 

Z'D 

JaVaprakash and Katz (1982) quote the values 

(2.114) 

(2.115) 

(2.116) 

III Ill. WL 3 (1) 3(jL -p +IU+ OCL I 
L4 

tA) 
ý- *41 

YW (2.117) 

+Q3 oce) 
02 (2.118) 

2 and using yý 2- v-1 n implies 

t. I : 61) + *2 S=- (ý) (4+ 163 313)) ' 
(2.119) 

Solving (2.116) and (2.119) simultaneousIV gives the fixed point values to o(c) 

as 
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E 433(3))V- (2.120) + ocýh ) 

lk UL Qt 215 (3)) E 
Ia. 

-V o CEI (2.121) 

Substituting these values Into equation (2.108) we finally obtain the universal 

ratio of susceptibility amplitudes to two loops as 

S3. 
) ( 

il 
6A 2- -4) E 

C- 

1, -L & 
(jj) I '-% 5 (3) - (. 3 LA. I. 3(j) IAI, I+ 

+ 4r 514 
-E 

53 114 (2.122) 

2.7. Conclusions 

In this chapter we' have obtained an expression for the susceptibility 

amplitude ratio In the random Ising model to two loops, extending the 

previous result of Newlove (1983). In Table 2-1 we naively set e-1 In 

equation (2.122) and tabulate the results for the one-loop and two-loop 

calculations alongside experimental values obtained for the random system. 

One Loop Two Loop - Experiment(a) 

C+ 
1.7 3.6 2.45±0.15 

C- 

(a) Birgeneau et al, (1986) 

Table 2-1: Comparlson of results for susceptibility amplitude ratio 
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The value obtained for C+/C- at two, loops is considerably higher than the 

experimental value. The calculation detailed, in the previous section confirms 

that the trend of a negative correction at one-loop is not carried through to 

the next order in the e-expansion of the ratio in this model. Using a Padg 

approximant to trv and improve the estimate for the ratio Vields the value of 

The strongest statement that can be made about this two-loop result is 

that the new correction calculated takes the theoretical value In the, right 

direction", compared to the one-loop result. The practice of setting C-1 in an 

order F-1/2 result to obtain values to compare with experiments in three 

dimensions Is not be regarded with m. uch seriousness. Since a perturbation 

expansion parameter should be "small", c1/2 expansions would be expected to 

give less trustworthy results than an c-expanslon to the same, order. 
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CHAPTER 3 

STRUCTURE FACTOR IN THE RANDOM ISING MODEL 

3.1. Introduction 

Experimental data on the critical properties of magn; tic systems are in a 

large part based on neutron scattering measurements of the dynamical 

structure factor, S(q, w), where q Is the neutron momentum and w the neutron 

energy. This is calculated from the scattering cross-section using the relation 

ceo- 
- lc-ý 

where iI 

Incident wave number 

) (3.1) 

k- scattered wave number 

The spin structure factor, defined as the Integral over energy of S(q, w), Is 

related to the average Fourier transform of the spin-spin correlati6n function 

[<sll(o)sll(x)>] where <..,. > Implies a thermal average and an average over 

the Impurity distribution. Below Tc the longitudinal spin structure factor, Le., 

the component of S parallel to the order parameter, M, Is 

51k 
(v x 

11(v (3.2) 

The existence of a term C(s)(q) Is a consequence of the non-interchangeability 

of the thermal and configurational averages and Is therefore Identically zero 

for pure systems, and below Tc In the random system; It is a measure of the 

fluctuations in the local quenched order' pararneter,, and was first pointed out 
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by Grinstein, Ma and Mazenko (1977) in connection with the dynamics of a 

random Iling model. ý These authors proved that in mean field'theory, 

(3.3) 

where A Is the variance of the random distribution (see section 2.3). For the 

random Ising model this becomes 

CLN) 
(3.4) ()(,,, toý% ir Ký) 

where K is a constant (Aharony and Pelcovits, 1985). Thus, in mean field 

theory, this new correlation function exhibits a Lorentzian squared behaviour 

reminiscent of that found in random field problems. As has been shown by 

Aharony and Pelcovits (1985) this no longer holds true belowthe upper critical 

dimension, and equation (3.4) becomes, for small q, 

(0) = WA X, 
ti 
(0) 

(3.5) 

where K' Is another constant, Le., Lorentzian behaviour for small q. Both the 

general scaling arguments presented in Aharony and Pelcovits, and the explicit 

calculations of these authors and of the present work show that C(s)(q-0) 

diverges like X(q-0), with an amplitude which is a universal factor times that 

of X(q-0). The appearance of this factor has important consequences for the 

interpretation of the measured susceptibility amplitude ratio, implying that the 

experimental results are in fact measuring 

C+ 
and not 

C--ý 

c 
(3.6) 

This also implies that the,. susceptibility amplitude ratio calculated In the 
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previous chapter should not be the one compared with the results of neutron 

scattering experiments. These points are amplified in the discussion at the 

end of the present chapter. 

In this chapter we derive these equations and give a field theoretic 

derivation of the correlation function, C(sl(q) at q=O to order r1/2' thereby 

extending the result of Aharony and pelcovits (1985) to one higher order. This 

is achieved by utillsing an extension of the replica formalism to the case of 

multiple replica spaces. In section 3.4 we compare experimental results for 

the susceptibility amplitude ratio with calculated values in the light of this 

extra term. 

3.2. Double Replica Trick 

In this section we describe'in more detail how the term C(sý(q) arises in the 

longitudinal structure factor, and introduce a generalisation of the replica trick 

that allows us to calculate the correlation function in perturbation theory. 

As we discussed In section 2.2, the quenched randomness In a disordered 

system is Incorporated by performing a configurational average with respect to 

the impurity distribution over the free energy, Le., 

Fi: fý - 
fDiv ? Qý) im 

(3.7) 

and 

- -9 1 tý�v, -x% 2 11-)-s% s Z4) t (3.8) 

where li{ý, *, Jj is the random Ising Hamiltonian of equation (2.7). As outlined 

in section 1.2, correlation functions are generated by appropriate functional 
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derivatives of the free energy, F, with respect to the source term, J, e. g., 

Lao 

-sco (3.9) 

and 

wo 

` ý< ý OL) ý ('A) )3 - [/, ý (; t) > 1, is( 1) )] 

(3.10) 

(3.11) 

Now, in Fourier space 

Cs) 1< - 

(3.12) 

and we are therefore interested in derivatives which generate the first term 

above. In real space 

(3.13) T, 0 f>z-tll M-O 

((g. Im 
(3.14) Islux, 'xr- 0 Mý 0 %%) 

In order, to calculate the average over the impurity, we are forced to 
introduce two sets of replicas, ý11) and ý12) 

, each with n components. Then, 

as in section 2.3, 

i3l, 
S"D tip- LO 

ail 17.0 

(3.15) 
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where -9 is given by equation (2.17). In the above fclý is shorthand for fHclýj. 

Carrying out the functional derivatives and performing the Gaussian 

integral over * (assuming a Gaussian distribution for 4)) we obtain 

£4 ei, '<4(J»3 = Z, r;.. 
l. -L-git. 31 +, Kiul 

e 'D ý, 
4 

(Z eP' ) P- 
ko tt--4 u 

(3.16) 

If we now construct the vector a= , 
ýl ),..., On)) in the direct sum 11 (2 (2 

space of the two replica spaces, then 

2" -14 1 el 

4(j))] - ýý -L cr Cz o--, ) ( T. cro) P- 
VI-VO I, 

OLZI Poo (3.17) 

where the Hamiltonian is of the form (2.17) but with a 2n-component field. 

We therefore apply the- same transformation as in Chapter 2, and shift the cr 

field below Tcp 

cr =1 (3.18) 

where ot Is the longitudinal field and the Sj are the 2n-1 transverse fields. The 

2n vectors (ej) are defined by 

(3.19) 

(3.20) 

IOA 

e W. 
= c) (3.21) 

24 
7, eý e (3.22) 
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The Hamiltonian obtained is identical to equation (2.40) with the replacements 

11L (3.23) 

(3.24) 

and the 'new'definitions- 

e (3.25) 

(3.26) 

In terms of the new, shifted fields the static correlation function under 

consideration becomes 

Cýl LIM 0) 
(3.27) 

where, since the fields are deg6nerate, we use 

C Ell r 
LL) 94 

(3.28) 

Hence, to calculate Cls)(q-0) 'we need only calculate the two point functions 

r(') and r In the next section we proceed with the evaluation of act these 

quantities in perturbation theory. 
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3.3. Calculation of Cýý-O 

The calculation of C($)(q-0) requires us to evaluate the renormallsed 

two-point functions from the 2n-component Hamiltonian described in the 

previous section and Ih Chapter 2. The basic method is as discussed In 

Chapter 1 and detailed more fully in the previous chapter. However, we do not 

expand the transverse propagators about theý longitudinal In this case as the 

calculation to the one-loop order considered here is feasible using the 

standard methods. 

Renormallsation of the theo 

The renormalised parameters are the same as in- Chapter 2, , witý the 

replacement of n by 2n wherever it appears. They read 

jj+ I!. ut(vk*l)+ Vill 
/A Zi UO (3.29) 

1ý .I (3.30) 

-E 
sa 

kAR *L 64L, ) k4 t. J- t4o, 
Si 

IE (Fwý t (3.31) 

'ý ?%vA* 
it' ýtelt 

sit IL 

UT)t (3.32) 

to one-loop. We require r 121 and rW' in the ordered state, i. e., for T<Tc. The 01a a 

diagrams contributing to each vertex function t'o one loop are given In 

Figure 3-1. The diagrammatic series for the function r (2) leads to the Ctol 

expression 
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Figure 3-1: Graphs in two point functions to one loop 
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W 
- ý: (v-o, -rcic) I 

OL 

(L 
A 'L L. 

Wt * iVOLK' 
%VA- 

ULV% 

M4 vN 14 - 
0% 

cl, ý (It* ius-att + ivotq) tm Lýk + luieýritL * 1. 
Vel o 

.4t 
SA Woc', In vf. ) 

.U IL V%t-jý 

tilt Lut. 
vf. )'- u. 

- ý, -L js-O- 3t 

i tuo ýVteýl 3A 
,L it K'It Lue 

2 U-Ilk . 
(3.33) LKlk is ý"1K. Vtý La 

and, for rWb, I 
LIN 

IL 2. IL 
Lluolfovio Llo. * Uav'r(Lo. A IV, OM 144 J;? L s. ol) 

\w. Ltk *u it 
* V, 

V4411 us. 
k, %::! 

2, ̂ -, 
LtAAký*JV, 4) \, A (+L-k I UOLARO kygtýL) 

6ult 
- Lý&-t kt; 

L A týt + IvLVA' )VA ý tit* ju,, poý(t* jvoyýv. )ý 

z IL 

L K%) VýML Lt it 
S" 

R a; ýk IL + 

v 

(3-34) 

We now require the n-o-O limit of these expansions. To carrV out this limiting 

procedure we first expand the logarithms as power series in n using 

(ej, * CK-1 * A. " * ýAý4 Z el výI ý* t) w; »% N cit - cý V% 
A 0-tt + cm Cýs 

Alb 
k 

+ 0(41ý) 
2 The results of this expinsion procedure are (throughout b '0 tR + ýYRMR 

(3.35) 
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-11 0-1) 
/A T= Lk + 

VA'6 V. IL týo 

k I. VIL2 6,4 7. 
IL 

VI %AIL 4 

A. JIL tA P. +, 

+ o&, t) 

and 

(3.36) 

vit 

LA '6 

+j t14 4 0% 

UJLýJ) *1 4L 

ice 

(3.37) 

(Note that all factors of n-1 have vanished identically). 

Recalling that the universal behaviour In a system is obtained by studying 
the correlation functions evaluated with the coupling constants set equal to 

)1/2v: 1/2 their fixed point values, UR u -3(6 and v 4(6)1/2r1/2' we have R 

IL "IIIr tt) ( 1.0) "-apa 2VI 
494 

1-tr; 
(,, )T, 

i, 

J~A paLk 

(ILI 

To lowest order in the C1/2-expansion this gives 

(3.38) 

(3.39) 
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vo, tL 
JACK, 

& 
zol /l: "0 . Jt+UfLv5(, (3.40) 

I 

(3.41) 

(3.42) 4L 

(3.43) 

As In the equation of state calculation the condition <a> =0 gives MR for 

T<Tc, In an analogous way to the calculation of the two-point functions. The 

expression obtained reads, In the n-*O limit, 

.2- &+, - 
! A- ISA % 

-L IVA&) 
lasyk :L 

(3.44) 

(This provides a useful check on r (2) and r and (101 substituting'ln for VRMR2 

taking the n-1-0 limit we recover X(O) as In Newlove (1983) and Chapter 2). 

At the fixed point there are no corrections to scaling and the 

magnetisation behaves as 

tKý 
(3.45) 
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Using (3.44) with UR and VR put, equal to UR and v; we find 

t 
% tLIA 1 -1 VX 

K U-N) 

V 

+ OLIC) 
(3.46) 

+4 ot e) (3.47) 
L4 S3 

For X(O) We have at the fixed point 

C0 (3.48) 

and this gives 

z ý) E -,.. Ot F-) (3.49) 

Hence, to this order y= 28 and, therefore, WNW) -P constant at the fixed 

point. Thus, 

C CV 0) 
/A 

AR Mtjwý' 11 
(3.50) 

V 
-Z /'Iý 

LR 7"t 0) 11 *0( rt"') 1 (3.51) 
Vt" 

I+ (3.52) 4 

Therefore the amplitude ratio measured in S(q) Is not C4JC-, but Is in fact 

75 



+0 Let) 
(3.53) 

In agreement with the lowest-order calculation reported by Aharony and 

Pelcovits (1985). 

Using the twO-100p results which were derived in Chapter Tfor the fixed 

point values of the couplings we can extend this result to obtain the o(e 1/2) 

term. Writing the coupling constant ratio at the fixed point as 

4 io C f'. 

et (3.54) 

ct (3.55) 

and putting In the fixed point couplings to the two-loop level obtained In the 

previous chapter we find 

ý4, 
LI ýý-S lit 11% .. 

1z C4 OLE) LA 

r, ý (3.56) 17 

This Is sufficient to obtain the next order term in the expansion of Cls)(q-0) 

since all corrections are of order c and we have Included all graphs which 

contribute to the expansion at O(C112). Therefore 

C'(lzo) t. 111L VIL 
L4 

II -V ki-a- 3/ý (tý 4 
(3.57) 

and carrying out the algebra we arrive at the expression 
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Icks (D lit k(o) (3.58) 

3.4. Conclusions 

In this chapter we have calculated the correction to the ratio of critical 

amplitudes of the susceptibility above and below Tc to order c 1/2 and have 

confirmed the findings of Aharony and Pelcovits (1985) that the experimental 

measurements of the structure factor must be reinterpreted to take account of 

the static correlation functions contribution. This was carried out in a different 

formalism to their work and enabled the result to be extended to the next 

order in the e 1/2 -expansion. 

To enable this calculation to be carried out an extension of the replica trick 

was developed in which two tets of replica spins were Introduced. This Is 

easily extendable to allow more complicated correlation functions than the one 

detailed here to be studied In a field theoretic framework. In the table 

displayed in Table 3-1 we list the various quantities of Interest. In the 

c-expansion results we have naively set c-1 to extrapolate to three 

dimensions. 

Experiment(a) Random Ising Pure Ising (b) Present 
one loop one loop calculation 

2.45±0.15 1.7 3.2 

(a) Birgeneau at al (1986) 
(b) Br6zin at al (1974) 

Table 3-1-. Comparlson of results for susceptibility amplitude ratio 
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Recent results of a neutron scattering experiment (Birgeneau et al , 1986) 

designed to studV the critical -behaviour of the site ý. random Ising model 

MnxZnl-xF2 for two different dilutions give the value of the susceptibilitV 

amplitude ratio as 2.45: tO. 15. A search for a contribution to this ratio from a 

C(')(q-0) term was conducted but no evidence of such a contribution was 

found. 
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CHAPTER 4 

MONTE CARLO SIMULAT10N OF THE RANDOM ISING MODEL - 

4.1. Introduction , 

With' the advent of mo . re powerful digital computers numerical simulations 

have become an Important tool in the theoretical physicists bag. A large 

range of ph I ysical models (and unphysical onesl) have been subjected to' 

analysis using this, technique. - everything from classical liquids through to 

galactic dynamics. A review of general techniques and models' considered can 

be found In Binder (1979) and for the more relevant area of phase transition 

physics we refer the reader lo the book by Mo-uritsen (1'984). ý' In'the following 

discussion we will concentrate our attention on simulations -designed to 

explore the area of statistical mechanics and phase transitions. 

The two main types of computer simulation which have contributed 

significantly to the field of critical phenomena are molecular dynamics and 

Monte Carlo methods. In the case of a molecular dynamics simulation the 

classical equations of motion are Integrated numerically to calculate the time 

evolution of a system., In a Monte Carlo simulation, stochastic elements are 

Introduced to allow the simulation to sample phase space via a random walk 

to enable the estimation of the phase space integrals In thermodynamic 

averages. It is this latter method which was employed in the current work. 

In considering problems in statistical mechanics it Is soon obvious that a. 

simple, random sampling of points in phase space Is not the best, way to 

estimate the required integrals In the average of an observable, O(x), 
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- the exponential in the partition function varies over too large a range near 

the critical temperature. The solution is to use a sampling method which 

collects statistical Information according to its importance - this means that 

the phase space points are chosen with a probability which reflects the size of 

their contribution to the Integrals in (4.1). The most common of these 

sampling methods is the Metropolis algorithm (Metropolis at a/, 1953) in which 

the random walk is defined by specifying a probability of transition from phase 

space point x to phase space point y, W(x-1-y), such that detailed balance Is 

satisfied, Le., 

?e% Lx) W (x -P ý) 
(4.2) 

where 

?ý (-X) oc -e- 01 (4-3) 

This implies that the change . in energy alone governs the ratio of transition 

probabilities 

WOL- 
(4.4) 

A reallsation of the above MarkoV process that Is commonly used is 
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1. generate a random initial configuration, C, 

2. choose a trial' state, C2, according to the probabilitV 

W(Cl**C2) 

3. if the change in energV, AH - H(C2) - H(Cj), is negative, Cz 

is taken as the next element in the Markov chain. 

4. If AH -is positive, take C2 as the next element in the chain 

with probability, exp(-AH/kT). Else, duplicate C, as the next 

element 

5. go to 2 

If -the matrix' of transition' probabilities Is such that the Markov chain Is 

ergodic the above sequence will, in the long (Monte. Carlo) time'llmit, generate 

a distribution of states constituting the equilibrium 'ensemble at temperature T. 

A variation of the above procedure is to repeat steps 2 to 4a number of 

times with the same trial State C2 (multiple hits). In the limit of the number of 

hits tending to infinity we produce a distribution of states which Is correctly 

t hermallsed. This is the heat-bath algorithm and Is the technique adopted 

here; however, it is not Implemented by "hittingv an Infinite number of timesl 

In the random site-diluted Ising model a spin variable at lattice site 1, si, can 

be in one of three states, "up% "down" or "vacant". As the vacancies are 

quenched we need only consider "updating" the occupied lattice sites. The 

I heat-bath algorithm is implemented in this case bV posing the question, "what 

is the, probability, Pi, of the spin si being up, given Its' configuration of 

neighbouring spins? "' A pseudo-random number, C, in the range (0,11 is then 
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chosen and, if C<Pi-then-si is set up, else si is set down. 

The simulations described herein were executed on an ICL Distributed 

Array Processor (DAP),, part of the Edinburgh Regional Computing Centre 

(ERCC) hardware available to the University of Edinburgh's computer users. 

We shall, now briefly describe this machine and explain why it is particularly 

suited to the problem under consideration. 

The ICL Distributed AffaV Processor 

The DAP is a single-instruction-stream, multiple-data-stream (SIMD) 

parallel processor (Hockney and Jesshope, 1981; Bowler, 1983) consisting of a 

square array of 4096 processing elements (PE's),. each with an associated Ubit 

store of local memory. The DAP treats its contents as 4096 bit planes, all the 

elements In one bit-plane being opprated on simultaneously. The PE's are 

joined together In the topology of a two-dimensional square grid, with a PE 

located at each node (each having four neighbours; north, south, east and 

west), giving an ideal geometry for the simulation of two-dimensional, square 

lattice Ising models. The array edges can be connected In either of two 

geometries - planar or cyclic -, allowing the effects of boundarV conditions to 

be studied. Planar geometry corresponds to setting all the dndefined 

neighbours surrounding the array to zero, whereas cyclic geometry Identifies 

the north edge with the south, and the east with the west, thereby forming a 

2-torus. 

All the PE's - in the DAP have a set -of three hardware registers. Two of 

these, forming the Q plane and the C plane, are simply an accumulator and a 

carry store, whereas the third, the activity or. A plane, Is used to selectively 

mask out processing elements during certain operations. This feature allows 
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the addition of impurities Into our model In a -natural and calculationally 

efficient manner. 

Since the DAP has no input/output facilities incorporated in its design, it is 

necessarily parasitic on a host machine which is used to control its operation. 

This function Is provided by an ICL 2900 series mainframe. The DAP is then 

used as followl 

-a 'host' Fortran program Is rug on the 2900 

-this calls a subroutine written In DAP Fortran to, run on the ,, 

DAP 

data Is passed to and from the DAP via Fortran common 

areas 

?- the DAP performs computations on its local store 

control is passed back to the host 

- results are output from the common areas I 

The Fortran variant, DAP Fortran, Is an extended version of Fortran 4 designed 

to exploit the parallel nature of the machine by allowing operations to be 

performed simultaneously,, on, 64x64 arrays. ý This, combined with the speed 

with which the DAP performs logical operations (i. e., operations on bits), 

provides an Ideal environment for performing Ising model simulations. The 

current best estimate for the critical temperature in a three-dimensional Ising 

simulation was obtained using the DAP in Edinburgh (PawleV et aZ1984). 

The random, spin-J, Ising model is implemented on the DAP by using 
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logical Arue. to represent spin up, logical Jalse. to represent spin down, and 

using the A plane to mask off sites which contain non-magnetic impurities. 

This, coupled with a central updating routine written in the DAP assembler 

language, APAL, allowed the simulation to update at a rate of approximately 9 

million spin update trials per second. 

We now turn our attention to methods of analysing the results obtained 

from simulations performed using the Monte Carlo niethod. 

Scaling'AnalVsIs of Finite SVstem Results 

In most Monte Carlo simulations we are faced with the problem of 

extrapolating our measurements of an observable on finite size systems to 

extract the Infinite system -behaviour. The method most commonly used Is to 

apply the ansatz of finite-size scaling introduced by Fisher (1971)-which rests 

on the reallsation that'the size of a system is itself a variable In terms of 

which thermodynamic quantities scale (Fisher and Barber, 1972; 

Nightingale, 1976; Suzukl, 1977; Derrida, 1981). A modern review of fin, te-size 

scaling can be found in the article by Barber (in Domb and Green, 1983), and 

Amit (1984) gives a field theoretic explanation of the important Ideas 

underpinning the technique. 

Consider a finite sVstem with characteristic size L. Let QL(t) be some 

thermodynamic quantity which becomes singular In the limit L-1-co, t-1-0, and 

define 

Lw 
Q. w 

(4.5) 

Then, the finite-size scaling hypothesis Is introduced by asserting that 
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(4.6) 

where ý(t) Is the correlation length in the finite system, defined by 

C, (r) otr ,, I. 
ýI 

cq(r) Ar (4.7) 

where G(r) Is the two-point, spatial correlation function (Amit, 1984). This 

gives, for the free energV of a finite sVstem of N particles, 

Cum 

(4.8) 

where a and v are the'. specific heat and - correlation length exponents 

respectivelV, and t is the reduced temperature. The function f is a universal 

1/V scaling function of the variable tL 

Since we are dealing with a finite system the model cannot undergo a 

genuine second order phase transition. However, Fisher (1971) has suggested 

that a "transition temperature" for a finite system, Tc(L), can be defined as the 

temperature at which the specific heat has its maximum value. Finite-slze 

scaling then gives, for the shift in the critical temperature, 

16-T = -Te L 00) 
(4.9) 

For sVstems of size L which are outwith the asVmptotic region corrections to 

finite-size scaling must be introduced, e. g., 

(4.10) 
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where w is the correction-to-scaling exponent (Wegner, 1972; Aharony and 

Fisher, 1983). The system is simulated on different, sizes 'of lattice and the 

above is used to extrapolate to the bulk behaviour, L-1-oo, since it can be shown 

that the exponents implied by the finite-size scaling ansatz are those of the 
0 

bulk system (Barber, 1983). 

0. In the work presented here this -we are study the s, caling behaviour-of the 

block variable, sL, defined by 

CAF, (T -, (4.11) 

as the block size, L, is varied. In this case, an extension of the finite-size 

formalism leads us to make the ansatz that the probability distribution 

function, PL(S), of the block variable has the scaling form 

C 
(4.12) 

where t and y are, *the leading thermal and irrelevant scaling fields present. The 

method of analysis of sub-blocks of a larger system does not Incorporate the 

length scale provided by the finite system size. Standard finite-size scaling 

analysis studies the behaviour of quantities as the system size is changed; 

here, we study the scaling of variables defined on blocks of a larger system as 

we vary the block size. To refer to this as finite-size scaling In the 

conventional sense is a misnomer given this distinction. Binder (1981) has 

suggested a method by which the transition temperature can be located 

accurately using an analysis of the distribution function of the magnetisation 

of sub-blocks of a larger lattice; the Ideas of the real-space renormallsation 

group, -coarse-graining and universality lead one to believe that for large 
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system size, and at criticality, the distributions should tend to universal scaling 

forms (Bruce, 1981). For a detailed description of a finite-size scaling analysis 

of block distribution functions In the pure IsIng model we refer'the reader to 

the previously cited paper by Binder. Here we will only quote the salient 

results. 

To define a block variable in the Ising Model we partition the lattice Into 

sub-blocks of side L and define, e. g., the block magnetisation, by performing 

the spatial average over the -spin variables, - aj, within the, block, Le., in d 

dimensions 

low'. (4.13) 

where 

cr. 
se-, ý sitx I. (4.14) 

The block distribution function Is then the analogue of the Boltzmann 

probability factors for the spin variables aj, giving the probability distribution 

for the block variables, si, for sub-blocks of side L, 

? 
L. (s -ý) = ew [- li,.,. (Is j)] (4.15) 

Here, * coarse Is the coarse-grained Hamiltonian arising from the blocking 

procedure. If we define the moments of the distribution through 

ý Sý >, 
- = as sx IP'LS) )k ed&. % (4.16) 

and the cumulant ratio 
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G, L. 
= 

- 

: z4cýL- (4.17) 

it can be shown (Binder, 1981) that, as L-1-co, GL-o-O for T>Tr, GL-1-1 for T<Tc, and 

for T-Tc, GL-"GL*, a non-trivial "fixed point". The behaviour of the cumulant 

ratio as a function of L can be visualised as a renormalisation group flow 

diagram, with GL flowing to fixed point values under the change of length 

scale, L This can therefore be used as a means of locating the transition 

temperature, Tc. However, to obtain a good estimate for Tc, L-1 must be small. 

The criteria of having a sub-block L large enough to probe-close to the fixed 

point values and simultaneously small enough compar4d' to the overall system 

size not to see the effects of the finite system it is embedded In, are not 

realisable for the system sizes currently feasible for simulation, even in two 

dimensions. Binder suggests using the ratio of cumulant values for different 

block sizes. In this case the critical temperature, Tcj is obtainable from the 

relationship 

C-4 
Gta (4.18) 7=7c 

The fact that the cumulants for different sub-block sizes, L, are measured 

during the same sim6lation run, and are therefore correlated, can be exploited 
I 

to reduce the statistical errors in an estimate for Tc. If we take the difference 

between the cumulant values for different L values then the effect of the 

correlations between the moments will be to give a smaller statistical error In 

this result than in the G's individually. We therefore used the relationship 

C-rL C-T 

cn 

)Tar 
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to obtain our estimate for Tc. ' 

The following section presents the results of the application of the above 

to the case of the pure Ising model. 

42. Critical Behaviour in the Pure Ising Model 

I 

As a preliminary to any study I of a dilute Ising model It Is - wise' I to check 

the accuracy and veracity of the method on the pure model since comparison 

with exact results Is possiple for the twoý-dimenslonal case. In this section we 

give details of. the simulation and analysis used to obtain the transition 

temperature and exponent values'for the pure Ising model. 

Simulation Details * 

The simulation reported in this section was carried out in two dimensions 

on a 128 2 latticq of Ising spins with periodic boundary conditions. A cold 

start, with all the spins aligned, was used, and before data were collected 

100,000 lattice updates'were disca rded to allow for equilib ration of the system. 

Measurements 'were subsequently taken everV 100 lattice updates and results 

binned over every 10 measurements. Each complete run collected 500 results 

and took approximately 17 minutes of DAP time. ' The 'quantities calculated In 

the measuring phase were- the second 'moment, ' <s 2 
-"L, the fourth moment, 

<s4 >L, the energV (nearest-neighbo6r, correlation function), the total 

magnetisation, Wand the absolute magnetisation IMI (this quantitv Is the 

absolute value of the magnetisation averaged over 10 measurements, not the 

average of the absolute values). Results for the moments were obtained on 
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sub-block sizes '2,4,8,16,32 and 64, although not all -these sizes'were 

subsequentIV used in the analVsis due to finite-size and correction-to-sca I ing 

effects - see the discussion accompanVing the data analVsis for details. After 

the moments had been collected, from their average values the cumulant ratio 

GL Was calculated. 

The test used for equilibration was subjective In character and involved 

studying the behaviour of coarse-grained averages along the Markov chain of 

configurations generated by the simulations. Mouritsen (1984) suggests the 

following procedure for. obtaining an estimate of the length of the Markov 

chain, M, required to obtain a reliable approximation to the equilibrium 

ensemble. If we define the n th coarse-grained average of an observable 0 bV 

Lill (4,4)M 
(4.20) 

where AM = number of statistically independent configurations, Cj, averaged 

over, then the function 

V4A 
,Am 

ir km *%ý, E<o, ý M--, -ta 0 K4 (4.21) 

provides us with Information on the reliability of our data. If Am settles down 

to a reasonably stable value over a large range of m values, this value can be 

taken as an estimate of the required equilibrium average, <0>. The number 

of sWeeps discarded'for equilibration, purposes was chosen by studying long 

simulation run data for-T near the known-exact value of Tc and picking, by eye, 

a value of M in excess of the equilibration time Indicated by the function Am. * 

The stability of the data thereafter showed upI in the low standard deviations 

in the values measured during the run. - 
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Wel now present the results of the simulation of the pure two-dimensional 

Ising model on a square lattice of 1282 spins. 

Results 

The pure model was simulated f or a range of temperatures from T-1 to 

T-3, measured in units of coupling strength/Boltzmann's constant. The total 

amount of DAP time used for this set of runs was of the order of 50 hours, 

with initially 5 runs at each temperature. The second and fourth moment. 

values were then averaged over these runs and an error assigned to their 

average values on the basis of the standard deviations In the statistically 

Independent results obtained from the different runs. From these average 

values the cumulant ratio was calculated for block sizes differing by a factor 

of 2, e. g., 

Gr 
I- 

C-N Gry 
C., 

2. 
C. Ct ,1 :1" 

-(4.22) 

The value of Tc was then estimated from 'the point at which the above 

functions changed sign. The resulting estimates are tabulated in Table 4-. 1. 

Additional results carried out for a few selected temperatures confirmed that 

the sign of the ratio was well-determined by the number, of runs considered 

here. 

G8-G4 G16-G8 G32-G16 G64-G32 
Exact Value ------ ------ ------- ------ 

G4-G2 G8-G4 G16-G8 G32-TG16 

2.2691853 2.2651(l) 2.2701(3) 2.272(2) 2.27(3) 

Table 4-1: Estimates of Tc for Pure Ising Model 
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The cumulant values for different sub-block sizes are plotted as a function 

.m 
of temperature as Figure 4-1. Clearly, as L-1-co, th e cumulant assumes a 

step-function behaviour as predicted at a value of T-Tc. An "eyeball" 

estimation of Tc from the graph bV the point where the lines cross gives a 

value of, 2.27. 

The magnetisation and energy of the pure system are displayed in 

Figures 4-2 and 4-3. The magnetisation shows the step-function characteristic 

of a transition from a disordered to an ordered state as we pass through the 

critical temperature. Again, an "eyeball" estimate of Tc from the magnetisation 

plot produces the value of 2.25; this value should be taken as just an 

indication of the region in which the critical temperature lies. The graph of 

energy versus temperature contains evidence of the divergence of the specific 

heat at criticality; since the specific heat is. the derivative of the energy with 

respect to temperature, at Tc this divergence will be apparent as a vertical 

gradient in the EvT plot. Due to. the finite size of the system simulated the 

gradient does not actually achIeve the vertical, but it does come quite close. 

As T-1-0, the energy tends to the value of -2 and the magnetisation tends to 1, 

as expected In the fully-ordered state. 

Finite-size scaling predictions for the behaviour of the moments -studied 
. 

can also be utilised to locate the critical temperature and to extract values for 

the critical exPOnents, B and v. - It can be shown (Binder, 1981) that the 

moments have the scaling form 

(T-ToL 

(4.23) 
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Figure 4-1: Cumulant versus Temperature for the pure system 
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Figure 4-3: Energy versus Temperature for the pure system 
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L 
Q' (7-7- 

(4.24) 

where we have Included a. correction-to-scaling term, 'with exponent'w. 'We 

have explicitly set a to zero in these scaling relations since we are working in 

two dimensions. The-scaling relation, vd =2a, then implies that'v-l'in this 

case. In the fits ývhose results are quoted the exponent v wai left as a-free 

parameter to check- consistency with this prediction. The vanishing "of the 

specific heat, exponent Implies a logarithmic divergence of the specific heat In 

the two-dimensional- Ising , model and the' above fitting form- should be 

modified from- a power law singularity of the reduced Aemperature to a 

logarithmic divergence. Some fits were performed to the data with this type 

of scaling form but no Improvement in the quality of the fits over the power 

law case was'found. Tor'the reasons stated for examining the cumulant ratio, 

fitting the (dimensional) ratio <s4>L/<s 2 >L is expected to give better results 

than fitting to the individual moments. Comparing the values obtained In this 

manner (see below) to the exact values for the critical temperature, 

Tc=2.2691853..., and exponents, B=0.125 and v-1.0, the much Improved results 

from using the ratio of the moments rather than the individual moments 

themselves stand out clearly. The scaling form of the ratio Is the same as 

that for the second moment given in equation (4.23). Fits were performed to 

all three of the above quantities, the two moments and the ratio, for all 

possible ranges of L values between 4 and 64 which could be included. This 

was to enable us to make a prediction as to'the best range of L values to be 

used In the later studies of the diluted model. Initial attempts at fitting the 
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data produced very high X2 values. On examining the major contributions to 

the x2 It was found that spuriously low standard deviations for temperatures 

at which only a few runs had been performed contributed disproportionately. 
I 

Therefore, the standard deviations for sets of three adjacent temperatures 

were averaged to produce a more representative contribution to the X 2. This 

procedure was to be preferred to discarding the data completely for these 

temperatures. Data at the extreme ends of the temperature range considered 

were discarded as these are expected to lie outside the asymptotic regime in 

which the above scaling forms are assumed to be valid. The results from the 

fitting procedure are tabulated as Tables 4-2,4-3 and 4-4. The 

correction-to-sca ling exponent, w, was found to be ill-determined by this 
I 

fitting procedure, as found by Binder in his analysis of the three dimensional 

case. The belief is that the two-dimensional Ising model Is a special case in 

which there are no non-analytic corrections-to-scaling (Barma and 

Fisher, 1985). The tabulated results for the range of L values of L-4 to L-32. 

combined with the values of Tc obtained from considering the cumulant ratios 

involving G's measured on these sub-block sizes leads us to use this range of 

L for the later analysis of the dilute Ising case. 

Since <s k : ý'L- CkO"aOfk(ý/L) in the sub-block case, wIe can find the 

exponent ratio 28/v by analysing. the function (Binder, 1981) 

Lsý 
->lot. (4.25) 

At Tc, < S2 'ý" L- L-2 S/Vaof2(co) 
and hence the, corresponding value of W B, W*8' is 

an estimate for the exponent ratio 2S/v. The results obtained for different 

values of the scale factor, b, are then extrapolated as a function of (in b)-1 to 
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Table 4-2: Results of fits to second moments for pure system 

L TC v 

4-8 2.25(l) 0.12(3) 1.2(l) 

4-16 2.277(4) 0.17(2) 1.20(6) 

4-32 2273(3) 0.19v) 1.24(4)- 

4-64 2.28(2) 0.17(4) 1.44(4) 

8-16 2.270(2) 0.19(5) 1.3(2) 

8-32 2.23(2) 0.25(3) 1.12(2) 

8-64 2.266(4) 0.19(g) 1.54(6) 

16-32 2.25(2) 0.3(2) 1.1(5) 

32-64 2.22(3) 0.22(2) 2.02(4) 

Table 4-3: Results of fits to fourth moments for pure system 

L Tc v 

4-8 2.28(l) 0.16(l) 0.99(6) 
4-16 2.276(3) 0.161(g) 1.10(4) 

4-32 2.276(3) 0.17(6) 1.2(4) 

4-64 2.34(5) 0.2(2) 1.41(3) 

8-16 2.278(3) 0.16(5) 1.5(2) 

8-32 2.235(3) 0.19(5) 1.3(2) 

8-64 2.272(2) 0.20(7) 1.6(3) 

16-32 2.22(3) 0.16(6) 3.1(9) 

16-64 2.28(3) 0.23(6) 1.5(2) 

32-64 2.29(2) 0.265(7) 1.6(4) 

a 
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Table 4-4: Results of fits to ratios of moments for pure system 

L TC v 

4-8 2.255(7) 0.073(4) 0.98(5) 

4-16 2.266(l) 0.12(4) 1.0(3) 

4-32 2.2701(3) 0.126(3) 1.02(2) 

4-64 2.2711(3) 0.113(4) 1.10(2) 

8-16 2.286(l) 0.168(6) 0.982(5) 

8-32 2.2706(3) 0.125(5) 1.10(4) 

8-64 2.272(l) 0.112(4) 1.18(2) 

-16-32 2.267(3) . 13'(2) 1.14(9) 

16-64 2.268(5) 0.13(9) 1.22(8) 

32-64 2.276(3) 0.13(2) 1.3(l) 
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the limit (In b)-l-1-0 to obtain the infinite sVstem value. The results of this 

procedure are shown In Figure 4-4. Similarly, the function YS defined as 

ýp 

(4.26) 

gives estimates for 48/v at criticality. The values obtained are plotted as a 

function of (In b)-1 in Figure 4-5. If th'e two sets of estimates for the ratio 

obtained from the second and the fourth moments are plotted on the same 

diagram the estimates are found to be entirely consistent, with the fourth 

moment results having the smaller spread at the low b values. From this we 

estimate a final S/v value, 

Am 0- t22 -X 0-002. 
(4.27) 

consistent with the exact value of 0.125. 

We now turn our attention to. the simulation of the diluted Ising model. 

43. Critical Behaviour in the Diluted Ising Model 

In this section. we present the results obtained from the simulation 

described in the previous section of this chapter, when the model was 

modified bV the addition of quenched impurities. The details of the data 

collection and analysis are the same as for the pure case, apart from the 

important addition of the configurational average over the vacancy distribution. 

Recently, Binder and Landau (1985) have used the technique of sub-block 

scaling to locate the phase boundary in two diniensional Ising models with 

nearest-, next-nearest- and third-nearest-neighbour couplings. The first 
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objective of the current study was to locate and map out the critical curve as 

a function of the dilution in the two-dimensional, site-diluted Ising model. 

The cumulant, CL, described in the previous section is modified by the 

presence of a configurational average over the moments, Le., <S2 ý"L IS 

replaced by (<S2 : ýOLL where the [-. ] represent the average over the impurities. 

This was Incorporated into the simulation by repeating runs for a given 

temperature and dilution with different vacancy distributions and then 

averaging over the results. Usually, about 5 runs were incorporated Into these 

averages, utillsing, ' on average, about one-and-a-half hours of DAP time per 

temperature. For the site-diluted two-dimensional IsIng model on a square 

lattice the percolation concentration is, approximately, p, =0.59. Ten different 

values of p were used in the following work, ranging from p=0.6 to p =1.0 (the 

pure case). As one approaches the critical point the effects of critical slowing 

down become manifest, where changes in the values being measured occur 

over longer (Monte Carlo) timescales. Equilibration time Increases as we 

Increase the amount of dilution intr6duced into the system, due to the 

reduction In the number of possible paths by which the affect of spin flips can 

be propagated. This constrained us to study values of p in the range quoted 

above, and not to probe closer to the percolation threshold. As mentioned in 

the previous section concerning the pure Ising case, the time for equilibration 

was estimated from oeyeballingn coarse-grained averages over long runs for 

various dilutions. Overall about 300- hours of DAP time were needed to 

complete the data collection for the diluted case. As for the pure model, the 

energy and magnetisation were also measured. These quantities as a function 

of temperature for different dilutions are presented as Figures 4-6 and 4-7. 

The energy plots reveal the expected inflection point which can be used as an 

estimate for Tc; In the limit of the system size -1-co the energy as a function of 
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temperature has infinite slope at Tc giving rise to the divergence in the 

specific heat at T-Tc. The plots of the magnetisation against temperature 

shows the expected transition to the (thermally) disordered state at the same 

value of T. The cumulant values measured were assigned an error -according 

as the standard deviation in the (statistically independent) runs with different 

distributions of vacancies. As in the pure case, the criterion used as a signal 

for the phase transition was 

0 

Wrt (4.28) 

where the bar over the GL indicates they are calculated from impurity 

averaged moments. As we are running on a 1282 system, to minimise the 

Influence of finite-size effects (large L) and correction s-to-sca I Ing (small 

the ratio which Is expected to produce the most accurate results is 

Gr3j G, 6 

(ýw Gry (4.29) 

The results of these measurements are presented as the phase diagram given 

In Figure 4-8. Measuring the reduced limiting slope 

5=I c(Tc 
(4.30) 

from the graph, we obtain the value of 1.578±0.012, in good agreement with 

the exact result of 1.565 (Stinchcombe, in Domb and Lebowitz, 1983). 

The ratio of the moments measured during the simulations was analysed, 

as in the pure case, by fitting the data to a predicted scaling form to extract 

the critical temperature and exponent values. The range of L values included 
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for this analysis was taken as L-4 to L-32,, the, choice being guided by the 

results of the pure system analysis. The results obtained are tabulated as 

Table 4-5. 

Again, as for the pure system, the function YS was used to produce a 

; eries of estimates for the exponent 48/v for varying values of dilution. The 

smaller spread In the Y*8 values makes it easier to estimate the limiting Value 

as (In b)-'-*O and hence is used in preference to W*S. From this function we 

obtain estimates as to the value of 4B/v, as plotted in Figures 4-9 (a)-(i). 

4A. Discussion of results 

In this section we discuss the results for the exponent ratio 13/v obtained 

from the simulation performed on the site-diluted Ising model and presented 

In the previous section. Reference should be made to the figures at the end 

of that section. 

To estimate the value of the exponent ratio In the limit (in b)-1-1-0, the 

wedge of points contained within the outer curves In the plots of the function 

YS Is expected to be the best indicator of any trend. The reason for this Is 

that the upper curve consists of points involving block size 2 compared to the 

other sizes. As may clearly be seen from the graphs these points detach 

themselves from the others when dilution Is introduced. This Is to be 

expected, due to the introduction of a new, random fixed. point, since the 

system will then be affected by a correction-to-scaling exponent wherever It 

lies in phase space and it is the small block sizes which are most affected by 

correction-to-sca ling effects. The points along the bottom curve are those 

which involve a moment calculated on a block size of 64. These values are 

most affected by finite-size effects. For dilutions of 0,05 and 0.1 the data are 
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Table 4-5: Results of fits to ratio of moments for diluted sVstem 

p x2 TC v 

0.95 1500/80 2.076(l) 0.15(2) 1.005(7) 

0.9. 106/100 1.88(2) 0.17(2) 0.93(3) 

0.85 54/92 1.713(7) 0.14(3) 1.1(2) 

0.8 80/160 1.520(2) 0.11(2) 0.92(4) 

0.75 104/124 1.045(3) 0.176(3) 0.881 j9) 

0.7. 1335/124 0.9(3) 0.25(4) 1.02(2) 

0.65 260/92 0.97(8) 0.180(5) 0.90(2) 

0.625 380/88 0.82(2) 0.17(2) 0.93(3) 

0.6 218/84 0.64(l) 0.08(7) 1-02(3) 



l/In b -, 
gab 1*50 1.65 1.80 

Figure 4-9a: 48/v estimates for p=0.95 

110 



I Figuw4-9b: 4B/V estimates-for p=O. g 

ft .. 

ill 

W OW le I.; cu I. a5 1.50 1.8s 1.80 
--, - 

-. - -0 1/1 .nb %OQ 



> 

U. -W Iowa lau 1.35 1.50 1.85 1.80 

I n,, b 

Figure 4-9c: 4 S/v estimjtes for, pý0.85 

112: 



>1 

C 

1/ln'- 

Figure 4-9d: 4B/v e'stirrikes'for p=O'. 8 

113 

. 50 1.85 1.80 



0.500 1111 
-1 0-00 0.15 o-ýo 0., 45 0.80 0.75 0.90 ' I. OS 1.20 1.35 ', 1.50 - 1.65 -1.80 

I/In, 
-, b 

Figure 4-9e: 4B/, estimates for p, =0.75 

114, 



QL 

Figure 4-9f-. 48/v estimates for p-O. T 

U. 10 U. A) 1. U5 1.20 I. M I. M 1.6s 1.80 

I/In b 



I/In b 

Figure 4-9g: 48/v estimates for p-0.65,7, 

1.50 1.85- I. eo 



j. m U. it) U. 50 0.75 0.90 1.05 1.20 1.35 le5O 1.85 IsOO 

l/In b 

Figure 4-9h: 4B/v estimates for p-0-625 

117 



80 

I/in b 

Figure 4-91: 40/v estimates for p-0.6 

118 



clearly consistent with the expected pure Ising 413/v value of J. However, even 

after, disregarding the two sets of data for L=2 and L-64, we observe a 

pronounced increase in the estimated value for the exponent ratio S/v as we 

move down -the critical curve, increasing the dilution. This observed evolution 

is mirrored in the fixed point values of the curnulant, G*, which show d 

systematic decrease in value as we introduce greater amounts of dilution. 

This behaviour, which is a reflection of a decrease In the extent of the 

short-range order, Is consistent with the picture emerging from droplet-based 

studies of critical phenomena In d=l+c (Bruce and Wallace, 1983) which show 

that the deviation of G* from 1 (in the d-1 limit) is a direct measure of the 

B/v index. 

Finally, we comment briefly on the possible explanations for the observed 

behaviour. in the phase diagram being studied we expect to observe the 

effects of competition amongst the three fixed points present; the pure IsIng 

fixed point on the p=1 axis, the percolation fixed point on the T-0 axis, and the 

random Ising fixed point for non-zero T and p, <p<l. The scaling behaviour 

of the moments at any point on the critical curve apart from the percolation 

and pure Ising limits should be that of the random Ising fixed point since It Is 

the attractive fixed point of the three. For "small" values of Impurity 

conqentration, ý, c (=1-p), we expect to see a crossover from pure Ising 

behaviour to random Ising exponents as we approach the critical curve. 

Similarly, for small T values the crossover should occur from percolation to 

random-Ising behaviour as we change the dilution and approach the critical 

temperature. Thus, for example, by rewriting the sum over configurations In 

the impurity average of the moments of the block distribution function In 

terms of a sum over clusters of occupied sites and inyoking finite-size scaling 

forms for cluster averages, it is easy to show that, in the percolation limit, the 
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moments scale as the block, size to a power of the percolation index ratio, 

(8/v)p (-; &) Possible explanations for the increase' in the index ratio observed 

In the simulation are therefore: 

(a) ý we could'be seeing a crossover from the pure Ising 0 value to a 

I random Ising 0 value; where BRI>Bl. The results of c 1/2 expansions for the 

exponent 8 (see equation (3.47) or, Newlove, 1983) Indicate that in two 

dimensions the value of 0 in the random case Is greater than In the pure 

model. This latter extrapolation from an expansion about four' dimensions to 

the two-dimensional case considered here is to be regarded as being of 

doubtful legitimacy since the expansion parameter, e, Is assumed to be small; 

here we are setting c-21 

M another possibility is that, since we are In a situation where the specific 

I heat exponent Is iero, the random Ising behaviour may be the same as for the 

pure Ising case, but- with additional, multiplicative Idgarithmic factors (Jug, 

1983) (c. f., modification of the critical behaviour at a tricritical point In three 

dimensions (Bruce and Cowley, 1981)). If such logarithmic corrections are 

present they could show up in an *effective" exponent ratio, differing from the 

exponent values characterising the true asymptotic behaviour. 

(c) the crossover may be from a pure IsIng B value to a random Ising B 

value, where SROýBj but with a non-monotonic behaviour In the crossover 

region. Non-monotonic behaviour of effective exponents during crossover 

from the domain of influence of one fixed point to the domain of Influence of 

another has been observeq (Barma and Mher, 1985; Bruce, 1977) 

(d) the percolation fixed point may be Influencing the behaviour. As for the 

above case, the B/v ratio for percolation Is less than for the pure IsIng and we 
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may again be observing non-monotonic crossover behaviour. 

In conclusion, this thesis 'has -carried the study of the dilute Ising model 

further than previous work, in several respects. In analytic calculations using 

field theory methods we have extended the calculation of two critical 

amplitudes to one higher order In an expansion in C 1/2 (E-4-d). In numerical 

work, we have used. state of the art block spin methodswith high statistl'cs to 

explore the phase diagram and critical behaviour In the two dimensional case. 

Positive results are obtained in both areas. For example, the new term 

obtained in the susceptibility amplitude ratio goes In the right direction for 

agreement with experiment, in contrast to the one-loop result. The numerical 

results pin down the phase diagram, reproducing the expected limiting 

behaviour. Nevertheless, the main qualitative conclusion from the thesis Is that 

it underlines the difficulty In extracting In a systematically controlled way 

critical behaviour in even this simplest of random systems. In particular, the 

quantitatively unreliable nature of the E1/2 expansion is further exposed and 

the need for very large siMulations''to control crossover effects Is highlighted. 

The former will probably never be remedied; one may look however, with 

some optimism,. to improvements in the results from simulations In the future. 
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