
Algorithmica (2015) 73:217–233
DOI 10.1007/s00453-014-9915-3

Fast Algorithm for Partial Covers in Words

Tomasz Kociumaka · Solon P. Pissis ·
Jakub Radoszewski · Wojciech Rytter ·
Tomasz Waleń

Received: 10 December 2013 / Accepted: 19 June 2014 / Published online: 16 July 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract A factor u of a wordw is a cover ofw if every position inw lies within some
occurrence of u in w. A word w covered by u thus generalizes the idea of a repetition,
that is, a word composed of exact concatenations of u. In this article we introduce a
new notion of α-partial cover, which can be viewed as a relaxed variant of cover, that
is, a factor covering at least α positions in w. We develop a data structure ofO(n) size
(where n = |w|) that can be constructed inO(n log n) timewhichwe apply to compute
all shortest α-partial covers for a given α. We also employ it for an O(n log n)-time
algorithm computing a shortest α-partial cover for each α = 1, 2, . . . , n.

Keywords Cover of a word · Quasiperiodicity · Suffix tree

T. Kociumaka · J. Radoszewski (B) · W. Rytter · T. Waleń
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
e-mail: jrad@mimuw.edu.pl

T. Kociumaka
e-mail: kociumaka@mimuw.edu.pl

W. Rytter
e-mail: rytter@mimuw.edu.pl

T. Waleń
e-mail: walen@mimuw.edu.pl

S. P. Pissis
Department of Informatics, King’s College London, London WC2R 2LS, UK
e-mail: solon.pissis@kcl.ac.uk

W. Rytter
Faculty of Mathematics and Computer Science, Copernicus University, Toruń, Poland

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81905962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9915-3&domain=pdf

218 Algorithmica (2015) 73:217–233

1 Introduction

The notion of periodicity in words and its many variants have been well-studied in
numerous fields like combinatorics on words, pattern matching, data compression,
automata theory, formal language theory, and molecular biology (see [10]). However
the classic notion of periodicity is too restrictive to provide a description of a word
such as abaababaaba, which is covered by copies of aba, yet not exactly periodic.
To fill this gap, the idea of quasiperiodicitywas introduced [1]. In a periodic word, the
occurrences of the period do not overlap. In contrast, the occurrences of a quasiperiod
in a quasiperiodic word may overlap. Quasiperiodicity thus enables the detection of
repetitive structures that would be ignored by the classic characterization of periods.

The most well-known formalization of quasiperiodicity is the cover of word. A
factor u of a word w is said to be a cover of w if u �= w, and every position in w lies
within some occurrence of u in w. Equivalently, we say that u covers w. Note that a
cover of w must also be a border—both prefix and suffix—of w. Thus, in the above
example, aba is the shortest cover of abaababaaba.

A linear-time algorithm for computing the shortest cover of a word was proposed
by Apostolico et al. [3], and a linear-time algorithm for computing all the covers of a
wordwas proposed byMoore and Smyth [22]. Breslauer [4] gave an online linear-time
algorithm computing the minimal cover array of a word—a data structure specifying
the shortest cover of every prefix of the word. Li and Smyth [21] provided a linear-
time algorithm for computing the maximal cover array of a word, and showed that,
analogous to the border array [9], it actually determines the structure of all the covers
of every prefix of the word.

A known extension of the notion of cover is the notion of seed. A seed is not
necessarily aligned with the ends of the word being covered, but is allowed to overflow
on either side. More formally, a word u is a seed of w if u is a factor of w and w is
a factor of some word y covered by u. Seeds were first introduced by Iliopoulos et
al. [17]. A linear-time algorithm for computing the shortest seed of a word was given
by Kociumaka et al. [18].

Still it remains unlikely that an arbitrary word, even over the binary alphabet, has a
cover (or even a seed). For example, abaaababaabaaaababaa is a word that not
only has no cover, but whose every prefix also has no cover. In this article we provide
a natural form of quasiperiodicity. We introduce the notion of partial covers, that is,
factors covering at least a given number of positions in w. Recently, Flouri et al. [13]
suggested a related notion of enhanced covers which are additionally required to be
borders of the word.

Partial covers can be viewed as a relaxed variant of covers alternative to approximate
covers [23]. The approximate covers require each position to lie within an approximate
occurrence of the cover. This allows for small irregularities within each fragment of a
word. On the other hand partial covers require exact occurrences but drop the condition
that all positions need to be covered. This allows some fragments to be completely
irregular as long as the total length of such fragments is small. Due to the requirement
of exact occurrences in partial covers they enjoy a number of combinatorial properties
thanks to which they can be computed more efficiently than approximate covers,

123

Algorithmica (2015) 73:217–233 219

Fig. 1 For u =aabaaa and w =aaabaaaabaaabaaababaabaaa we have Covered(u, w) = 21

where the time complexity rarely drops below quadratic and some problems are even
NP-hard.

Let Covered(u, w) denote the number of positions in w covered by occurrences of
the word u in w; we call this value the cover index of u within w (see Fig. 1). We
primarily focus on the following two problems, but the tools we develop can be used to
answer a number of questions concerning partial covers, some of which are discussed
in the conclusions.

PartialCoversproblem
Input: a word w of length n and a positive integer α ≤ n.
Output: all shortest factors u such that Covered(u, w) ≥ α.

Each factor given in the output is represented by the starting and ending position of
its occurrence in w.

Example 1 Let w = bcccacccaccaccb and α = 11. Then the only shortest α-
partial covers are ccac and cacc.

AllPartialCoversproblem
Input: a word w of length n.
Output: for all α = 1, . . . , n, a shortest factor u such that Covered(u, w) ≥ α.

Our contribution. The following summarizes our main result.

Theorem 1 The PartialCovers and AllPartialCovers problems can be solved in
O(n log n) time and O(n) space.

We extensively use suffix trees, for an exposition see [8,9]. A suffix tree of a word
is a compact trie of its suffixes, the nodes of the trie which become nodes of the suffix
tree are called explicit nodes, while the other nodes are called implicit. Each edge of
the suffix tree can be viewed as an upward maximal path of implicit nodes starting
with an explicit node. Moreover, each node belongs to a unique path of that kind.
Then, each node of the trie can be represented in the suffix tree by the edge it belongs
to and an index within the corresponding path. Each factor of the word corresponds
to an explicit or implicit node of the suffix tree. A representation of this node is called
the locus of the factor. Our algorithm finds the loci of the shortest partial covers, it is
then straightforward to locate an occurrence for each of them.

1.1 A Sketch of the Algorithm

The algorithm first augments the suffix tree of w, that is, a linear number of implicit
extra nodes become explicit. Then, each node of the augmented tree is annotated with
two integer values. They allow for determining the size of the covered area for each

123

220 Algorithmica (2015) 73:217–233

implicit node by a simple formula, since limited to a single edge of the augmented
suffix tree, these values form an arithmetic progression. This yields a solution to the
PartialCovers problem. For an efficient solution to the AllPartialCovers problem, we
additionally find the upper envelope of a number of line segments constructed from
the arithmetic progressions.

1.2 Structure of the Paper

In Sect. 2 we formally introduce the augmented and annotated suffix tree that we call
Cover Suffix Tree. We show its basic properties and present its application for Partial-
Covers and AllPartialCovers problems. Section 4 is dedicated to the construction of
the Cover Suffix Tree. Before that, Sect. 3 presents an auxiliary data structure being
an extension of the classical Union/Find data structure; its implementation is given
later, in Sect. 5. Additional applications of the Cover Suffix Tree are given in Sects. 6
and 7. The former presents how the data structure can be used to compute all distinct
primitively rooted squares in a word and a linear-sized representation of all the seeds in
a word. The latter contains a short discussion of variants of the PartialCovers problem
that can be solved in a similar way.

A preliminary version of this work appeared in the Proceedings of the Twenty-
Fourth Annual Symposium on Combinatorial Pattern Matching, pp. 177–188, 2013.

2 Augmented and Annotated Suffix Trees

Let w be a word of length n over a totally ordered alphabet Σ . The suffix tree T of w

can be constructed in O(n log |Σ |) time [12,24]. For an explicit or implicit node v of
T , we denote by v̂ the word obtained by spelling the characters on a path from the root
to v. We also denote |v| = |v̂|. As in most applications of the suffix tree, the leaves of
T play an auxiliary role and do not correspond to factors (actually they are suffixes of
w#, where # /∈ Σ). They are labeled with the starting positions of the suffixes of w.

We introduce the Cover Suffix Tree of w, denoted by CST(w), as an augmented—
new nodes are added—suffix tree in which the nodes are annotated with information
relevant to covers. CST(w) is similar to the data structure namedMinimal Augmented
Suffix Tree (see [2,6]).

For a set X of integers and x ∈ X , we define

nextX (x) = min{y ∈ X, y > x},

and we assume nextX (x) = ∞ if x = max X . By Occ(v,w) we denote the set of
starting positions of occurrences of v̂ in w. For any i ∈ Occ(v,w), we define:

δ(i, v) = nextOcc(v,w)(i) − i.

Note that δ(i, v) = ∞ if i is the last occurrence of v̂. Additionally, we define:

cv(v) = Covered(v̂, w), �(v) = ∣
∣ {i ∈ Occ(v,w) : δ(i, v) ≥ |v|} ∣

∣;

123

Algorithmica (2015) 73:217–233 221

Fig. 2 Letw =bcccacccaccaccb and let v be the node corresponding to cacc. We haveOcc(v, w) =
{4, 8, 11}, cv(v) = 11, Δ(v) = 2

see, for example, Fig. 2.
A word u is called primitive if u = yk for a word y and an integer k implies that

y = u, and non-primitive otherwise. A square u2 is called primitively rooted if u is
primitive.

Observation 1 Let v be a node in the suffix trie of w. Then v̂v̂ is a primi-
tively rooted square in w if and only if there exists i ∈ Occ(v,w) such that
δ(i, v) = |v|.
Proof Recall that, by the synchronization property of primitive words (see [9]), v̂ is
primitive if and only if it occurs exactly twice in v̂v̂.

(⇒) If v̂v̂ occurs in w at position i then δ(i, v) = |v|.
(⇐) If δ(i, v) = |v| then obviously v̂v̂ occurs in w at position i . Additionally, if
v̂ was not primitive then δ(i, v) < |v| would hold.

	

In CST(w), we introduce additional explicit nodes called extra nodes, which cor-

respond to halves of primitively rooted square factors of w. Moreover we annotate all
explicit nodes (including extra nodes) with the values cv,�; see, for example, Fig. 3.
The number of extra nodes is bounded by the number of distinct squares, which is
linear [14], so CST(w) takes O(n) space.

Lemma 1 Let v1, v2, . . . , vk be the consecutive implicit nodes on the edge from an
explicit node v of CST(w) to its explicit parent. Then for 1 ≤ i ≤ k we have

cv(vi) = cv(v) − i�(v),

in particular (cv(vi))ki=1 forms an arithmetic progression.

Proof Note that Occ(vi , w) = Occ(v,w), since otherwise vi would be an explicit
node of CST(w). Also note that if any two occurrences of v̂ in w overlap, then the
corresponding occurrences of v̂i overlap. Otherwise, byObservation 1, the path from v

to vi (excluding v) would contain an extra node. Hence, when we go up from v (before
reaching its parent) the size of the covered area decreases at each step by Δ(v). 	

Example 2 Consider the word w from Fig. 3. The word cccacc corresponds to an
explicit node of CST(w); we denote it by v. We have cv(v) = 10 and Δ(v) = 1
since the two occurrences of the factor cccacc in w overlap. The word cccac
corresponds to an implicit node v′ and cv(v′) = 10 − 1 = 9. Now the word ccca
corresponds to an extra node v′′ of CST(w). Its occurrences are adjacent in w and
cv(v′′) = 8, Δ(v′′) = 2. The word ccc corresponds to an implicit node v′′′ and
cv(v′′′) = 8 − 2 = 6.

123

222 Algorithmica (2015) 73:217–233

c
c
a

b
c
c
a

b

c
a
c
c
a
c
c
b

b

b
c
c
a
c
c
a
c
c
c
a
c
c
c

c

c
a

c

b
c
c
a

b

c
a
c
c
a
c
c
b

b

c

a

c

c

b
c
c
a

b

c
a
c
c
a
c
c
b

b

c
a

c
c

b
c
c
a

c
a
c
c
a
c
c
b

Fig. 3 CST(w) for w =bcccacccaccaccb. It contains four extra nodes that are denoted by squares in
the figure. Each node is annotated with cv(v), �(v). Leaves are omitted for clarity

As a consequence of Lemma 1 we obtain the following result. Recall that the locus of
a factor v of w, given by its start and end position in w, can be found inO(log log |v|)
time [20].

Lemma 2 Assume we are given CST(w). Then we can compute:

(1) for any α, the loci of the shortest α-partial covers in linear time;
(2) given the locus of a factor u in the suffix tree CST(w), the cover index

Covered(u, w) in O(1) time.

Proof Part (2) is a direct consequence of Lemma 1. As for part (1), for each edge of
CST(w), leading from v to its parent v′, we need to find minimum |v| ≥ j > |v′| for
which cv(v)−�(v) · (|v|− j) ≥ α. Such a linear inequality can be solved in constant
time. 	

Due to this fact the efficiency of the PartialCovers problem relies on the complexity of
CST(w) construction. In turn, the following lemma, also a consequence of Lemma 1,
can be used to solve AllPartialCovers problem provided that CST(w) is given. As a
tool a solution to the geometric problem of upper envelope [16] is applied.

Lemma 3 Assume we are given CST(w). Then we can compute the locus of a shortest
α-partial cover for each α = 1, 2, . . . , n in O(n log n) time and O(n) space.

Proof Consider an edge ofCST(w) from v to its parent v′ containing k implicit nodes.
For each such edge, we form a line segment on the plane connecting points (|v|, cv(v))

and (|v| − k, cv(v) − k · �(v)) (if there are no implicit nodes on the edge, the line
segment is a single point). Denote all such line segments obtained from CST(w) as

123

Algorithmica (2015) 73:217–233 223

Fig. 4 Line segments constructed as in Lemma 3 for the CST(w) from Fig. 3. E.g., the line segment
corresponding to the edge from cccacc to ccca is (5, 9)–(6, 10). The marked points joined with a
dashed polyline show the values of the integer upper envelope function E ′. The prefix maxima sequence for
E ′ is as follows: μ1 = μ2 = μ3 = 10, μ4 = 11, μ5 = . . . = μ12 = 12, μ13 = 13, μ14 = 14, μ15 = 15.
We infer that the lengths of the shortest α-partial covers of w are: 1 for α ≤ 10, 4 for α = 11, 5 for α = 12,
and α for α ≥ 13

s1, . . . , sm ; we have m = O(n). We consider the upper envelope E of the set of
these segments. Formally, if each si connecting points (xi , yi) and (x ′

i , y
′
i), xi ≤ x ′

i ,
is interpreted as a linear function on a domain [xi , x ′

i], E is defined as a function
E : [1, n] → [1, n] such that:

E(x) = max{si (x) : i ∈ {1, . . . ,m}, x ∈ [xi , x ′
i]}.

Here we are actually interested in an integer envelope E ′, that is, E limited to inte-
ger arguments, see Fig. 4. By Lemma 1, for any j ∈ {1, . . . , n}, E ′(j) equals the
maximum of Covered(u, w) over all factors u of w such that |u| = j . A piecewise
linear representation of E can be computed inO(m logm) time andO(m) space [16],
therefore the function E ′ for all its arguments can be computed in the same time
complexity.

Let us introduce a prefix maxima sequence for E ′: μi = max{E ′(j) : j ∈
{1, . . . , i}}, with μ0 = 0. Note that μi is non-decreasing. If μi > μi−1 then the
shortest α-partial cover for all α ∈ (μi−1, μi] has length i . An example of such a par-
tial cover can be recovered if we explicitly store the initial line segments used in the
pieces of the representation of E . Thus the solution of the AllPartialCovers problem
can be obtained from the sequence μi in O(m) = O(n) time. 	

In the following two sections we provide anO(n log n) time construction of CST(w).
Together with Lemmas 2 and 3, it yields Theorem 1.

123

224 Algorithmica (2015) 73:217–233

Fig. 5 Let P be the partition of {1, . . . , 9} whose classes consist of leaves in the subtrees rooted at
children of v, P = {{1, 3, 4}, {2, 5, 6, 7}, {8, 9}}, and let P ′ = {{1, . . . , 9}}. Then ChangeList(P,P ′) =
{(1, 2), (2, 3), (4, 5), (7, 8)} (depicted by dotted arrows)

3 Extension of Disjoint-Set Data Structure

In this section we extend the classic disjoint-set data structure to compute the change
lists of the sets being merged, as defined below. First, let us extend the next notation.
For a partition P = {P1, . . . , Pk} of U = {1, . . . , n}, we define

nextP (x) = nextPi (x) where x ∈ Pi .

Now for two partitions P,P ′ let us define the change list (see also Fig. 5) by

ChangeList(P,P ′) = {(x, nextP ′(x)) : nextP (x) �= nextP ′(x)}.

We say that (P, id) is a partition of U labeled by L if P is a partition of U and
id : P → L is a one-to-one (injective) mapping. A label � ∈ L is called active if
id(P) = � for some P ∈ P and free otherwise.

Lemma 4 Let n ≤ k be positive integers such that k is of magnitude �(n). There
exists a data structure of sizeO(n), which maintains a partition (P, id) of {1, . . . , n}
labeled by L = {1, . . . , k} and supports the following operations:

– Find(x) for x ∈ {1, . . . , n} gives the label of P ∈ P containing x.
– Union(I, �) for a set I of active labels (|I | ≥ 2) and a free label � replaces all

P ∈ P with labels in I by their set-theoretic union with the label �. The change list
of the corresponding modification of P is returned.

InitiallyP is a partition into singletons with id({x}) = x. Any valid sequence of Union
operations is performed in O(n log n) time. A single Find operation takes O(1) time.

Note that these are actually standard disjoint-set data structure operations except
for the fact that we require Union to return the change list. The technical proof of
Lemma 4 is postponed until Sect. 5.

4 O(n log n)-Time Construction of CST(w)

The suffix tree of w augmented with extra nodes is called the skeleton of CST(w),
which we denote by sCST(w). It could be constructed using the fact that all square

123

Algorithmica (2015) 73:217–233 225

factors of aword can be computed in linear time [11,15].However,we do not need such
a complicated machinery here. We will compute sCST(w) on the fly, simultaneously
annotating the nodes with cv, Δ.

We introduce auxiliary notions related to covered area of nodes:

cvh(v) =
∑

i∈Occ(v,w)
δ(i,v)<h

δ(i, v), �h(v) = |{i ∈ Occ(v,w) : δ(i, v) ≥ h}|.

Observation 2 cv(v) = cv|v|(v) + Δ|v|(v) · |v|, �(v) = �|v|(v).

Example 3 Let w =bcccacccaccaccb and let v be the node corresponding to
cacc, as in Fig. 2;Occ(v,w) = {4, 8, 11}.We have: cv4(v) = 3, Δ4(v) = Δ(v) = 2,
cv(v) = 3 + 2 · 4 = 11.

In the course of the algorithm somenodeswill have their values c,Δ already computed;
we call them processed nodes. Whenever v will be processed, so will its descendants.

The algorithm processes inner nodes v of sCST(w) in the order of non-increasing
height h = |v|. The height is not defined for leaves, so we start with h = n + 1. Extra
nodes are created on the fly using Observation 1 (this takes place in the auxiliary Lift
routine).

We maintain the partition P of {1, . . . , n} given by sets of leaves of subtrees rooted
at peak nodes. Initially the peak nodes are the leaves of sCST(w). Each time we
process v, all its children are peak nodes. Consequently, after processing v they are
no longer peak nodes and v becomes a new peak node. The sets in the partition are
labeled with identifiers of the corresponding peak nodes. Recall that leaves are labeled
with the starting positions of the corresponding suffixes. We allow any labeling of the
remaining nodes as long as each node of sCST(w) has a distinct label of magnitude
O(n). For this set of labels we store the data structure of Lemma 4 to compute the
change list of the changing partition.

v1 v2
v3 v4

v5

v

root

h

i

Fig. 6 One stage of the algorithm, where the peak nodes are v1, . . . , v5 while the currently processed
node is v. If i ∈ List[d] and v3 = Find(i), then d = δ(i, v3) = Dist[i]. The current partition is
P = {Leaves(v1), Leaves(v2), Leaves(v3), Leaves(v4), Leaves(v5)}. After v is processed, the parti-
tion changes to P = {Leaves(v1), Leaves(v2), Leaves(v), Leaves(v5)}. The Union operation merges
Leaves(v4), Leaves(v3) and returns the corresponding change list

123

226 Algorithmica (2015) 73:217–233

We maintain the following technical invariant (see Fig. 6).
Invariant(h):

(A) For each peak node z we store: cv′[z] = cvh(z), �′[z] = Δh(z).
(B) For each i ∈ {1, . . . , n} we store Dist[i] = δ(i, Find(i)).
(C) For each d < h we store List[d] = {i : Dist[i] = d}.
We use two auxiliary routines. The Lift operation updates cv′ and Δ′ values when h
decrements. It also creates all extra nodes of depth h. The LocalCorrect operation is
used for updating cv′ andΔ′ values for children of the node v. TheDist and List arrays
are stored to enable efficient implementation of these two routines.

Algorithm ComputeCST(w)

T := suffix tree of w;

P := partition of {1, . . . , n} into singletons;
foreach v : a leaf of T do cv′[v] := 0, Δ′[v] := 1;

for h := n + 1 downto 0 do

Lift(h);

{Now part (A) of Invariant(h) is satisfied}

foreach v : an inner node of T , |v| = h do

cv′[v] := ∑

u∈children(v) cv′[u];
Δ′[v] := ∑

u∈children(v) Δ′[u];
ChangeList(v) := Union(children(v), v)

foreach (p, q) ∈ ChangeList(v) do LocalCorrect(p, q, v);
cv[v] := cv′[v] + Δ′[v] · |v|;
Δ[v] := Δ′[v];

return T together with values of cv, �;

4.1 Description of the Lift(h) Operation

The procedure Lift plays an important preparatory role in processing the current node.
According to part (A) of our invariant, for all peak nodes z we know the values:
cv′[z] = cvh+1(z), �′[z] = �h+1(z).Nowwehave to change h+1 to h and guarantee
validity of the invariant: cv′[z] = cvh(z), �′[z] = �h(z). This is exactly how the
following operation updates cv′ and Δ′.

It also creates all extra nodes of depth h that were not explicit nodes of the suffix
tree. By Observation 1, if i ∈ List[h] then at position i in w there is an occurrence of a
primitively rooted square of half length h. Consequently, an extra node corresponding
to this occurrence is created in the Lift operation.

Function Lift(h)

foreach i in List[h] do

v := Find(i);

Δ′[v] := Δ′[v] + 1; cv′[v] := cv′[v] − h;

if |parent(v)| < h then

Create a node of depth h on the edge from parent(v) to v;

123

Algorithmica (2015) 73:217–233 227

4.2 Description of the LocalCorrect(p, q, v) Operation

Here we assume that v̂ occurs at positions p < q and that these are consecutive
occurrences. Moreover, we assume that these occurrences are followed by distinct
characters, i.e. (p, q) ∈ ChangeList(v). The LocalCorrect procedure updatesDist[p]
to make part (B) of the invariant hold for p again. The data structure List is updated
accordingly so that (C) remains satisfied.

Function LocalCorrect(p, q, v)

d := q − p; d ′ := Dist[p];
if d ′ < |v| then cv′[v] := cv′[v] − d ′;
else Δ′[v] := Δ′[v] − 1;

if d < |v| then cv′[v] := cv′[v] + d;

else Δ′[v] := Δ′[v] + 1;
Dist[p] := d;

remove(p, List[d ′]); insert(p, List[d]);

4.3 Complexity of the Algorithm

In the course of the algorithm we compute ChangeList(v) for each v ∈ T . We have:

∑

v∈T
|ChangeList(v)| = O(n log n),

since each ChangeList is a result of Union operation and the total cost of such oper-
ations, by Lemma 4, is O(n log n). Consequently we perform O(n log n) operations
LocalCorrect. In each of them at most one element is added to a list List[d] for some
d. Hence the total number of insertions to these lists is also O(n log n).

The cost of each operation Lift is proportional to the total size of the list List[h]
processed in this operation. For each h, the list List[h] is processed once and the total
number of insertions into lists is O(n log n), therefore the total cost of all operations
Lift is alsoO(n log n). This proves the following fact which, together with Lemmas 2
and 3, implies our main result (Theorem 1).

Lemma 5 Algorithm ComputeCST constructs CST(w) inO(n log n) time andO(n)

space, where n = |w|.

5 Implementation Details

In this section we give a proof of Lemma 4. We use an approach similar to Brodal
and Pedersen [5] (who use the results of [7]) originally devised for computation of
maximal quasiperiodicities. Theorem3of [5] states that a subset X of a linearly ordered
universe can be stored in a height-balanced tree of linear size supporting the following
operations:

X.MultiInsert(Y): insert all elements of Y to X ,

123

228 Algorithmica (2015) 73:217–233

X.MultiPred(Y): return all (y, x) for y ∈ Y and x = max{z ∈ X, z < y},
X.MultiSucc(Y): return all (y, x) for y ∈ Y and x = min{z ∈ X, z > y},

in O
(

|Y |max
(

1, log |X |
|Y |

))

time.

Recall that our goal is to implement a sequence od Find and Union operations on a
dynamic partition (P, id) of {1, . . . , n} labeled by identifiers from a set L . EachUnion
operation is given a list of labels of sets in the partition and is to return a change list
of these sets after merge. The label of P ∈ P is denoted as id(P).

In the data structure we store each P ∈ P as a height-balanced tree. Additionally,
we store several auxiliary arrays, whose semantics follows. For each x ∈ {1, . . . , n}
we maintain a value next[x] = nextP (x) and a pointer tree[x] to the tree representing
P such that x ∈ P . For each P ∈ P (technically for each tree representing P ∈ P)
we store id[P] and for each � ∈ L we store id−1[�], a pointer to the corresponding
tree (null for free labels).

Answering Find is trivial as it suffices to follow the tree pointer and return the id
value. The Union operation is performed according to the pseudocode given below
(for brevity we write Pi instead of id−1[i]).

Function Union(I, �)

i0 := argmax{|Pi | : i ∈ I };
S := Pi0 ;

foreach i ∈ I \ {i0} do

foreach x ∈ Pi do tree[x] := S;

S.MultiInsert(Pi);

C := ∅;
foreach i ∈ I \ {i0} do

foreach (b, a) ∈ S.MultiPred(Pi) do

if next[a] �= b then C := C ∪ {(a, b)};
foreach (a, b) ∈ S.MultiSucc(Pi) do

if next[a] �= b then C := C ∪ {(a, b)};
id−1[i] := null;

id−1[i0] := null;

id[S] := �; id−1[�] := S;

foreach (x, y) ∈ C do next[x] := y;

return C ;

Claim The Union operation correctly computes the change list and updates the data
structure.

Proof In the Union operation for sets Pi , i ∈ I , we find the largest set Pi0 and
MultiInsert all the elements of the remaining sets to Pi0 . If (a, b) is in the change
list, then a and b come from different sets Pi , in particular at least one of them
does not come from Pi0 . Depending on which one it is, the pair (a, b) is found by
MultiPred or MultiSucc operation. While computing C , the table next is not updated
yet (i.e. corresponds to the state before Union operation) while S is already updated.
Consequently the pairs inserted toC indeed belong to the change list. OnceC is proved

123

Algorithmica (2015) 73:217–233 229

to be the change list, it is clear that next is updated correctly. For the other components
of the data structure, correctness of updates is evident. 	

Claim Any sequence of Union operations takes O(n log n) time in total.

Proof Let us introduce a potential function Φ(P) = ∑

P∈P |P| log |P|. We shall
prove that the running time of a single Union operation is proportional to the increase
in potential. Clearly

0 ≤ Φ(P) =
∑

P∈P
|P| log |P| ≤

∑

P∈P
|P| log n = n log n,

so this suffices to obtain the desired O(n log n) bound.
Let us consider a Union operation that merges partition classes of sizes p1 ≥ p2 ≥

· · · ≥ pk to a single class of size p = ∑k
i=1 pi . The most time-consuming steps of

the algorithm are the operations on height-balanced trees, which, for single i , run in

O
(

max
(

pi , pi log
p
pi

))

time. These operations are not performed for the largest set

and for the remaining ones we have pi < 1
2 p (i.e. log p

pi
≥ 1). This lets us bound the

time complexity of the Union operation as follows:

k
∑

i=2

max
(

pi , pi log
p
pi

)

=
k

∑

i=2

pi log
p
pi

≤
k

∑

i=1

pi log
p
pi

=
k

∑

i=1

pi (log p − log pi) = p log p −
k

∑

i=1

pi log pi ,

which is equal to the increase in potential. 	

6 By-Products of Cover Suffix Tree

In this section we present two additional applications of the Cover Suffix Tree. We
show that, given CST(w) (or CST of a word that can be obtained from w in a simple
manner), one can compute in linear time all distinct primitively rooted squares in w

and a linear representation of all the seeds of w, in particular, the shortest seeds of w.
This shows that constructing this data structure is at least as hard as computing all
distinct primitively rooted squares and seeds. While there are linear-time algorithms
for these problems [11,15,18,19], they are all complex and rely on the combinatorial
properties specific to the repetitive structures they seek for.

Theorem 2 Assume that the Cover Suffix Tree of a word of length n can be computed
in T (n) time. Then all distinct primitively rooted squares in a word w of length n can
be computed in T (2n) time.

Proof Let 0 /∈ Σ be a special symbol. Let ϕ : Σ∗ → (Σ ∪ {0})∗ be a morphism
such that ϕ(c) = 0c for any c ∈ Σ . We consider the word w′ = ϕ(w)0, that is, the

123

230 Algorithmica (2015) 73:217–233

Fig. 7 Seed of string aaabaabaabaaabaaba

word w with 0-characters inserted at all its inter-positions, e.g. if w = aabab then
w′ = 0a0a0b0a0b0.

Let us consider the set of explicit non-branching nodes of CST(w′) and select
among them the nodes corresponding to even-length factors of w′ starting with the
symbol 0. It suffices to note that there is a one-to-one correspondence between these
nodes and the halves of distinct primitively rooted squares in w. 	

Recall that a word u is a seed of w if u is a factor of w and w is a factor of some
word y covered by u, see Fig. 7. The following lemma states that the set of all seeds
of w has a representation of O(n) size, where n = |w|. This representation enables,
e.g., simple computation of all shortest seeds of the word. By a range on a edge of a
suffix tree we mean a number of consecutive nodes on this edge (obviously at most
one of these nodes is explicit). Let wR denote the reverse of the word w.

Lemma 6 ([17,18]) The set of all seeds of w can be split into two disjoint classes.
The seeds from one class form a single (possibly empty) range on each edge of the
suffix tree of w, while the seeds from the other class form a range on each edge of the
suffix tree of wR.

Wewill show that given CST(w) and CST(wR)we can compute the representation
of all seeds from Lemma 6 in O(n) time. Let us recall auxiliary notions of quasiseed
and quasigap, see [18].

By first(u) and last(u) let us denote minOcc(u) and maxOcc(u), respectively. We
say that u is a complete cover inw if u is a cover of the wordw[first(u), last(u)+|u|−
1]. The word u is called a quasiseed of w if u is a complete cover in w, first(u) < |u|
and n+1− last(u) < 2|u|. Alternatively,w can be decomposed intow = xyz, where
|x |, |z| < |u| and u is a cover of y.

All quasiseeds of w lying on the same edge of the suffix tree with lower explicit
endpoint v form a range with the lower explicit end of the range located at v. The
length of the upper end of the range is denoted as quasigap(v). If the range is empty,
we set quasigap(v) = ∞. Thus a representation of all quasiseeds of a given word can
be provided using only the quasigaps of explicit nodes in the suffix tree. It is known
that computation of quasiseeds is the hardest part of an algorithm computing seeds:

Lemma 7 ([17,18]) Assume quasigaps of all explicit nodes of suffix trees of w and
wR are known. Then a representation of all seeds of w from Lemma 6 can be found in
O(n) time.

It turns out that the auxiliary data in CST(w) and CST(wR) enable constant-time
computation of quasigaps of explicit nodes. By Lemma 7 this yields an O(n) time
algorithm for computing a representation of all the seeds of w. This is stated formally
in the following theorem.

123

Algorithmica (2015) 73:217–233 231

Theorem 3 Assume that the Cover Suffix Tree of a word of length n can be computed
in T (n) time. Given a word w of length n, one can compute a representation of all
seeds of w from Lemma 6 in T (n) time. In particular, all the shortest seeds of w can
be computed within the same time complexity.

Proof We show how to compute quasigaps for all explicit nodes of CST(w). The
computation forCST(wR) is symmetric. Note thatCST(w)may contain more explicit
nodes that the suffix tree of the word. In this case, the results from any maximal
sequence of edges connected by non-branching explicit nodes in CST(w) need to be
merged into a single range on the corresponding edge of the suffix tree.

By the definition of cv(v), an explicit node v of CST(w) is a complete cover in w

if the following condition holds:

cv(v) = last(v) − first(v) + |v|.

Thus for checking whether an explicit node v ofCST(w) is a quasiseed ofw it suffices
to check whether this condition and the following equalities hold:

first(v) < |v|, n + 1 − last(v) < 2|v|.

If v is not a quasiseed of w, we have quasigap(v) = ∞, otherwise we can assume
that quasigap(v) ≤ |v|.
Example 4 Consider the word w from Fig. 3, n = 15. The word cacc corresponds
to an explicit node of CST(w); we denote it by v. We have cv(v) = 11, first(v) = 4,
last(v) = 11, and last(v) − first(v) + |v| = 11. Therefore cacc is a quasiseed of w,
see also Fig. 2.

By Lemma 1, the condition for any node on the edge ending at v to be a complete
cover in w is very simple:

Δ(v) = 1.

Assume this condition is satisfied and consider any implicit node v′ on this edge,
|v′| = k. Then v′ is a quasiseed if both inequalities:

first(v) < k and n + 1 − last(v) < 2k

are satisfied. Thus in this case

quasigap(v) = max(first(v) + 1, �(n − last(v) + 2)/2�, |parent(v)| + 1).

Example 5 Consider the word w from Fig. 3. The word cccacc corresponds to an
explicit node of CST(w); we denote it by v. We have cv(v) = 10, first(v) = 2,
last(v) = 6, and last(v) − first(v) + |v| = 10. Therefore cccacc is a quasiseed of
w. Since Δ(v) = 1, quasigap(v) could be smaller than 6. However, �(n − last(v) +
2)/2� = 6 and the above formula yields quasigap(v) = 6.

This concludes a complete set of rules for computing quasigap(v) for explicit nodes
of CST(w). 	

123

232 Algorithmica (2015) 73:217–233

7 Conclusions

We have presented an algorithm which constructs a data structure, called the Cover
Suffix Tree, inO(n log n) time andO(n) space. The Cover Suffix Tree has been devel-
oped in order to solve the PartialCovers and AllPartialCovers problem in O(n) and
O(n log n) time, respectively, but it also gives a well-structured description of the
cover indices of all factors. Consequently, various questions related to partial covers
can be answered efficiently. For example, with the Cover Suffix Tree one can solve in
linear time a problem inverse to PartialCovers: find a factor of length between l and
r that maximizes the number of positions covered. Also a similar problem to AllPar-
tialCovers problem, to compute for all lengths l = 1, . . . , n the maximum number
of positions covered by a factor of length l, can be solved in O(n log n) time. This
solution was actually given implicitly in the proof of Lemma 3.

An interesting open problem is to reduce the construction time toO(n). This could
be difficult, though, since by the results of Sect. 6 this would yield alternative linear-
time algorithms finding all distinct primitively rooted squares and computing seeds.
The only known linear-time algorithms for these problems (see [11,15,18]) are rather
complex.

Acknowledgments Tomasz Kociumaka is supported by Polish budget funds for science in 2013–2017
as a research project under the ‘Diamond Grant’ program. Jakub Radoszewski receives financial support of
Foundation for Polish Science. Tomasz Waleń is supported by Iuventus Plus Grant (IP2011 058671) of the
Polish Ministry of Science and Higher Education.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings. Theor. Comput.
Sci. 119(2), 247–265 (1993)

2. Apostolico, A., Preparata, F.P.: Data structures and algorithms for the string statistics problem. Algo-
rithmica 15(5), 481–494 (1996)

3. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings. Inf. Process.
Lett. 39(1), 17–20 (1991)

4. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6), 345–347 (1992)
5. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings. In: Giancarlo, R.,

Sankoff, D. (eds.) Combinatorial Pattern Matching, 11th Annual Symposium, CPM 2000. Lecture
Notes in Computer Science, vol. 1848, pp. 397–411. Springer, Berlin (2000)

6. Brodal, G.S., Lyngsø, R.B., Östlin, A., Pedersen, C.N.S.: Solving the string statistics problem in time
O(n log n). In: Widmayer, P., Ruiz, F.T., Bueno, R.M., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
Automata, Languages and Programming, 29th International Colloquium, ICALP 2002. Lecture Notes
in Computer Science, vol. 2380, pp. 728–739. Springer, Berlin (2002)

7. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM 26(2), 211–226 (1979)
8. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2003)
9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cam-

bridge (2007)
10. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: algorithms and combinatorics. Theor.

Comput. Sci. 410(50), 5227–5235 (2009)

123

Algorithmica (2015) 73:217–233 233

11. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting
powers and periods in a word from its runs structure. Theor. Comput. Sci. 521, 29–41 (2014)

12. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, pp. 137–143 (1997)

13. Flouri, T., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P., Puglisi, S.J., Smyth, W., Tyczyński, W.:
Enhanced string covering. Theor. Comput. Sci. 506(0), 102–114 (2013)

14. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb. Theory Ser. A 82(1),
112–120 (1998)

15. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the tandem repeats in a
string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

16. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time. Inf. Process. Lett.
33(4), 169–174 (1989)

17. Iliopoulos, C.S., Moore, D., Park, K.: Covering a string. Algorithmica 16(3), 288–297 (1996)
18. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time algorithm for seeds

computation. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, pp. 1095–1112. SIAM (2012)

19. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, pp. 596–604. IEEE Computer Society
(1999)

20. Kucherov, G., Nekrich, Y., Starikovskaya, T.A.: Cross-document pattern matching. In: Kärkkäinen,
J., Stoye, J. (eds.) Combinatorial Pattern Matching—23rd Annual Symposium, CPM 2012. Lecture
Notes in Computer Science, vol. 7534, pp. 196–207. Springer, Berlin (2012)

21. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1), 95–106 (2002)
22. Moore, D., Smyth, W.F.: An optimal algorithm to compute all the covers of a string. Inf. Process. Lett.

50(5), 239–246 (1994)
23. Sim, J.S., Park, K., Kim, S., Lee, J.: Finding approximate covers of strings. J. Korea Inf. Sci. Soc.

29(1), 16–21 (2002)
24. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

123

	Fast Algorithm for Partial Covers in Words
	Abstract
	1 Introduction
	1.1 A Sketch of the Algorithm
	1.2 Structure of the Paper

	2 Augmented and Annotated Suffix Trees
	3 Extension of Disjoint-Set Data Structure
	4 mathcalO(n logn)-Time Construction of CST(w)
	4.1 Description of the Lift(h) Operation
	4.2 Description of the LocalCorrect(p,q,v) Operation
	4.3 Complexity of the Algorithm

	5 Implementation Details
	6 By-Products of Cover Suffix Tree
	7 Conclusions
	Acknowledgments
	References

