2,789 research outputs found
A steady, radiative-shock method for computing X-ray emission from colliding stellar winds in close, massive-star binaries
We present a practical, efficient, semianalytic formalism for computing steady state X-ray emission from radiative shocks between colliding stellar winds in relatively close ( orbital period up to order tens of days) massive-star, binary systems. Our simplified approach idealizes the individual wind flows as smooth and steady, ignoring the intrinsic instabilities and associated structure thought to occur in such flows. By also suppressing thin-shell instabilities for wind-collision radiative shocks, our steady state approach avoids the extensive structure and mixing that has thus far precluded reliable computation of X-ray emission spectra from time- dependent hydrodynamical simulations of close-binary, wind- collision systems; but in ignoring the unknown physical level of such mixing, the luminosity and hardness of X-ray spectra derived here represent upper limits to what is possible for a given set of wind and binary parameters. A key feature of our approach is the separation of calculations for the small-scale shock-emission from the ram-pressure-balance model for determining the large-scale, geometric form of the wind-wind interaction front. Integrating the localized shock emission over the full interaction surface and using a warm-absorber opacity to take account of attenuation by both the smooth wind and the compressed, cooled material in the interaction front, the method can predict spectra for a distant observer at any arbitrary orbital inclination and phase. We illustrate results for a sample selection of wind, stellar, and binary parameters, providing both full X-ray light curves and detailed spectra at selected orbital phases. The derived spectra typically have a broad characteristic form, and by synthetic processing with the standard XSPEC package, we demonstrate that they simply cannot be satisfactorily fitted with the usual attenuated single-or two-temperature thermal-emission models. We conclude with a summary of the advantages and limitations of our approach and outline its potential application for interpreting detailed X- ray observations from close, massive-star binary systems
Inference of hot star density stream properties from data on rotationally recurrent DACs
The information content of data on rotationally periodic recurrent discrete absorption components (DACs) in hot star wind emission lines is discussed. The data comprise optical depths tau(w,phi) as a function of dimensionless Doppler velocity w=(Deltalambda/lambda(0))(c/v(infinity)) and of time expressed in terms of stellar rotation angle phi. This is used to study the spatial distributions of density, radial and rotational velocities, and ionisation structures of the corotating wind streams to which recurrent DACs are conventionally attributed. The simplifying assumptions made to reduce the degrees of freedom in such structure distribution functions to match those in the DAC data are discussed and the problem then posed in terms of a bivariate relationship between tau(w, phi) and the radial velocity v(r)(r), transverse rotation rate Omega(r) and density rho(r, phi) structures of the streams. The discussion applies to cases where: the streams are equatorial; the system is seen edge on; the ionisation structure is approximated as uniform; the radial and transverse velocities are taken to be functions only of radial distance but the stream density is allowed to vary with azimuth. The last kinematic assumption essentially ignores the dynamical feedback of density on velocity and the relationship of this to fully dynamical models is discussed. The case of narrow streams is first considered, noting the result of Hamann et al. (2001) that the apparent acceleration of a narrow stream DAC is higher than the acceleration of the matter itself, so that the apparent slow acceleration of DACs cannot be attributed to the slowness of stellar rotation. Thus DACs either involve matter which accelerates slower than the general wind flow, or they are formed by structures which are not advected with the matter flow but propagate upstream (such as Abbott waves). It is then shown how, in the kinematic model approximation, the radial speed of the absorbing matter can be found by inversion of the apparent acceleration of the narrow DAC, for a given rotation law. The case of broad streams is more complex but also more informative. The observed tau(w,phi) is governed not only by v(r)(r) and Omega(r) of the absorbing stream matter but also by the density profile across the stream, determined by the azimuthal (phi(0)) distribution function F-0(phi(0)) of mass loss rate around the stellar equator. When F-0(phi(0)) is fairly wide in phi(0), the acceleration of the DAC peak tau(w, phi) in w is generally slow compared with that of a narrow stream DAC and the information on v(r)(r), Omega(r) and F- 0(phi(0)) is convoluted in the data tau(w, phi). We show that it is possible, in this kinematic model, to recover by inversion, complete information on all three distribution functions v(r)(r), Omega(r) and F-0(phi(0)) from data on tau(w, phi) of sufficiently high precision and resolution since v(r)(r) and Omega(r) occur in combination rather than independently in the equations. This is demonstrated for simulated data, including noise effects, and is discussed in relation to real data and to fully hydrodynamic models
Role of tumour necrosis factor gene polymorphisms (-308 and -238) in breast cancer susceptibility and severity
Introduction
Genetic polymorphisms in the promoter region of the tumour necrosis factor (TNF) gene can regulate gene expression and have been associated with inflammatory and malignant conditions. We have investigated two polymorphisms in the promoter of the TNF gene (-308 G>A and -238 G>A) for their role in breast cancer susceptibility and severity by means of an allelic association study.
Methods
Using a case–control study design, breast cancer patients (n = 709) and appropriate age-matched and sex-matched controls obtained from the Breast Screening Unit (n = 498) were genotyped for these TNF polymorphisms, using a high-throughput allelic discrimination method.
Results
Allele frequencies for both polymorphisms were similar in both breast cancer cases and controls. However, the -308 polymorphism was found to be associated with vascular invasion in breast tumours (P = 0.024). Comparison with other standard prognostic indices did not show any association for either genotype.
Conclusions
We demonstrated no association between the -308G>A polymorphism and the -238G>A polymorphism in the promoter region of TNF and susceptibility to breast cancer, in a large North European population. However, the -308 G>A polymorphism was found to be associated with the presence of vascular invasion in breast tumours
Chiral symmetry breaking in hot matter
This series of three lectures covers (a) a basic introduction to symmetry
breaking in general and chiral symmetry breaking in QCD, (b) an overview of the
present status of lattice data and the knowlegde that we have at finite
temperature from chiral perturbation theory. (c) Results obtained from the
Nambu--Jona-Lasinio model describing static mesonic properties are discussed as
well as the bulk thermodynamic quantities. Divergences that are observed in the
elastic quark-antiquark scattering cross-section, reminiscent of the phenomenon
of critical opalescence in light scattering, is also discussed. (d) Finally, we
deal with the realm of systems out of equilibrium, and examine the effects of a
medium dependent condensate in a system of interacting quarks.Comment: 62 LaTex pages, incorporating 23 figures. Lectures given at the
eleventh Chris-Engelbrecht Summer School in Theoretical Physics, 4-13
February, 1998, to be published by Springer Verla
Insensitivity of the elastic proton-nucleus reaction to the neutron radius of 208Pb
The sensitivity--or rather insensitivity--of the elastic proton-nucleus
reaction to the neutron radius of 208Pb is investigated using a
non-relativistic impulse-approximation approach. The energy region (Tlab=500
MeV and Tlab=800 MeV) is selected so that the impulse approximation may be
safely assumed. Therefore, only free nucleon-nucleon scattering data are used
as input for the optical potential. Further, the optical potential includes
proton and neutron ground-state densities that are generated from
accurately-calibrated models. Even so, these models yield a wide range of
values (from 0.13 fm to 0.28 fm) for the poorly known neutron skin thickness in
208Pb. An excellent description of the experimental cross section is obtained
with all neutron densities. We have invoked analytic insights developed within
the eikonal approximation to understand the insensitivity of the differential
cross section to the various neutron densities. As the diffractive oscillations
of the cross sections are controlled by the matter radius of the nucleus, the
large spread in the neutron skin among the various models gets diluted into a
mere 1.5% difference in the matter radius. This renders ineffective the elastic
reaction as a precision tool for the measurement of neutron radii.Comment: 17 pages with 5 figure
Spin polarization and magneto-luminescence of confined electron-hole systems
A BCS-like variational wave-function, which is exact in the infinite field
limit, is used to study the interplay among Zeeman energies, lateral
confinement and particle correlations induced by the Coulomb interactions in
strongly pumped neutral quantum dots. Band mixing effects are partially
incorporated by means of field-dependent masses and g-factors. The spin
polarization and the magneto-luminescence are computed as functions of the
number of electron-hole pairs present in the dot and the applied magnetic
field.Comment: To appear in Phys. Rev.
Supersymmetric Model of Muon Anomalous Magnetic Moment and Neutrino Masses
We propose the novel lepton-number relationship , which
is uniquely realized by the interaction in supersymmetry and may account for a possibly large
muon anomalous magnetic moment. Neutrino masses (with bimaximal mixing) may be
generated from the spontaneous and soft breaking of this lepton symmetry.Comment: 10 pages, including 2 figure
On Yukawa quasi-unification with mu<0
Although recent data on the muon anomalous magnetic moment strongly disfavor
the constrained minimal supersymmetric standard model with mu<0, they cannot
exclude it because of theoretical ambiguities. We consider this model
supplemented by a Yukawa quasi-unification condition which allows an acceptable
b-quark mass. We find that the cosmological upper bound on the lightest
sparticle relic abundance is incompatible with the data on the branching ratio
of b-->s gamma, which is evaluated by including all the next-to-leading order
corrections. Thus, this scheme is not viable.Comment: 4 pages including 3 figures, Revte
Responses of quark condensates to the chemical potential
The responses of quark condensates to the chemical potential, as a function
of temperature T and chemical potential \mu, are calculated within the
Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the
recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc.
Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show
qualitatively similar behavior, and they will be complimentary ways to study
hadrons at finite density. The behavior above T_c requires more elaborated
analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura
memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised,
accepted for publication in Physical Review
Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO
We study properties of waves of frequencies above the photospheric acoustic
cut-off of 5.3 mHz, around four active regions, through spatial maps
of their power estimated using data from Helioseismic and Magnetic Imager (HMI)
and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory
(SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known
to capture clear oscillation signals due to helioseismic p modes as well as
waves propagating up through to the chromosphere. Here we study in detail, in
comparison with HMI Doppler data, properties of the power maps, especially the
so called 'acoustic halos' seen around active regions, as a function of wave
frequencies, inclination and strength of magnetic field (derived from the
vector field observations by HMI) and observation height. We infer possible
signatures of (magneto-)acoustic wave refraction from the observation height
dependent changes, and hence due to changing magnetic strength and geometry, in
the dependences of power maps on the photospheric magnetic quantities. We
discuss the implications for theories of p mode absorption and mode conversions
by the magnetic field.Comment: 22 pages, 12 figures, Accepted by journal Solar Physic
- …
