4,442 research outputs found

    EPA 9—Collaborate as a Member of an Interprofessional Team: a Short Communication from the AAMC Core EPAs for Entering Residency Pilot Schools

    Get PDF
    Members of the Association of American Medical Colleges Core Entrustable Professional Activities (EPAs) for Entering Residency Pilot worked to conceptualize how graduates might be entrusted for EPA 9: Collaborate as a member of an interprofessional team. Through an iterative group process informed by the literature and application to local curriculum and clinical experiences, we drafted a developmental framework and curriculum mapping tool. Ultimately, entrustment requires assessment in clinical settings. Nonetheless, teamwork and communication skills that are relevant to future entrustment can be taught and assessed in pre-clinical contexts such as small groups to ensure students are on an entrustment trajectory

    UV excess galaxies: Wolf-Rayet galaxies

    Get PDF
    We discuss V and R band photometry for 67% of the Sullivan et al. 2000 SA57 ultraviolet-selected galaxy sample. In a sample of 176 UV-selected galaxies, Sullivan et al. 2000 find that 24% have (UV-B) colors too blue for consistency with starburst spectral synthesis models. We propose that these extreme blue, UV excess galaxies are Wolf-Rayet (WR) galaxies, starburst galaxies with strong UV emission from WR stars. We measure a median (V-R)=0.38+-0.06 for the UV-selected sample, bluer than a sample optically selected at R but consistent with starburst and WR galaxy colors. We demonstrate that redshifted WR emission lines can double or triple the flux through the UV bandpass at high redshifts. Thus the (UV-B) color of a WR galaxy can be up to 1.3 mag bluer at high redshift, and the expected selection function is skewed to larger redshifts. The redshift distribution of the extreme blue, UV excess galaxies matches the selection function we predict from the properties of WR galaxies.Comment: 4 pages, including 4 figures. Uses AASTeX and emulateapj5.sty. Includes referee change

    The Cryogenic Refractive Indices of S-FTM16, a Unique Optical Glass for Near-Infrared Instruments

    Full text link
    The Ohara glass S-FTM16 is of considerable interest for near-infrared optical designs because it transmits well through the K band and because negative S-FTM16 elements can be used to accurately achromatize positive calcium fluoride elements in refractive collimators and cameras. Glass manufacturers have sophisticated equipment to measure the refractive index at room temperature, but cannot typically measure the refractive index at cryogenic temperatures. Near-infrared optics, however, are operated at cryogenic temperatures to reduce thermal background. Thus we need to know the temperature dependence of S-FTM16's refractive index. We report here our measurements of the thermal dependence of S-FTM16's refractive index between room temperature and ~77 K. Within our measurement errors we find no evidence for a wavelength dependence or a nonlinear temperature term so our series of measurements can be reduced to a single number. We find that Delta n_{abs} / Delta T = -2.4x10^{-6} K^{-1} between 298 K and ~77 K and in the wavelength range 0.6 micron to 2.6 micron. We estimate that the systematic error (which dominates the measurement error) in our measurement is 10%, sufficiently low for most purposes. We also find the integrated linear thermal expansion of S-FTM16 between 298 K and 77 K is -0.00167 m m^{-1}.Comment: 8 pages, including 9 figures. Uses emulateapj.cls. Accepted for publication in PAS

    Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor

    Get PDF
    Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol

    Diffusion, phase behavior and gelation in a two-dimensional layer of colloids in osmotic equilibrium with a polymer reservoir

    Get PDF
    The addition of enough non-adsorbing polymer to an otherwise stable colloidal suspension gives rise to a variety of phase behavior and kinetic arrest due to the depletion attraction induced between the colloids by the polymers. We report a study of these phenomena in a two-dimensional layer of colloids. The three-dimensional phenomenology of crystal-fluid coexistence is reproduced, but gelation takes a novel form, in which the strands in the gel structure are locally crystalline. We compare our findings with a previous simulation and theory, and find substantial agreement

    Surveying the Inner Halo of the Galaxy with 2MASS-Selected Horizontal Branch Candidates

    Full text link
    We use 2MASS photometry to select blue horizontal branch (BHB) candidates covering the sky |b|>15 deg. A 12.5<J<15.5 sample of BHB stars traces the thick disk and inner halo to d<9 kpc, with a density comparable to that of M giant stars. We base our sample selection strategy on the Century Survey Galactic Halo Project, a survey that provides a complete, spectroscopically-identified sample of blue stars to a similar depth as the 2MASS catalog. We show that a -0.20<(J-H)_0<0.10, -0.10<(H-K)_0<0.10 color-selected sample of stars is 65% complete for BHB stars, and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog, and see no spatial overdensities of BHB candidates at high Galactic latitude |b|>50 deg. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ~5 deg wide star stream with density greater than 0.33 objects deg^-2 at the 95% confidence level. The absence of structure suggests there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales <1 deg. This structure is apparently associated with stars in the thick disk, and has a physical scale of 10-100 pc. Interestingly, such structures are expected by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.Comment: 11 pages, including figures. Accepted by AJ with minor revision

    Emotional Intelligence in Agenesis of the Corpus Callosum

    Get PDF
    People with agenesis of the corpus callosum (AgCC) with normal general intelligence have deficits in complex cognitive processing, as well as in social cognition. It is uncertain the extent to which impoverished processing of emotions may contribute to social processing deficiencies. We used the Mayer–Salovey–Caruso Emotional Intelligence Test to clarify the nature of emotional intelligence in 16 adults with AgCC. As hypothesized, persons with AgCC exhibited greater disparities from norms on tests involving more socially complex aspects of emotions. The AgCC group did not differ from norms on the Experiential subscale, but they were significantly below norms on the Strategic subscale. These findings suggest that the corpus callosum is not essential for experiencing and thinking about basic emotions in a “normal” way, but is necessary for more complex processes involving emotions in the context of social interactions

    The Runaway White Dwarf LP400–22 Has a Companion

    Get PDF
    We report the detection of a radial velocity companion to the extremely low-mass white dwarf (WD) LP400–22. The radial velocity of the WD shows variations with a semiamplitude of 119 km s⁻Âč and a 0.98776 day period, which implies a companion mass of M ≄ 0.37 M ☉. The optical photometry rules out a main-sequence companion. Thus the invisible companion is another WD or a neutron star. Using proper-motion measurements and the radial velocity of the binary system, we find that it has an unusual Galactic orbit. LP400–22 is moving away from the Galactic center with a velocity of 396 ± 43 km s⁻Âč, which is very difficult to explain by supernova runaway ejection mechanisms. Dynamical interactions with a massive black hole like that in the Galactic center can in principle explain its peculiar velocity, if the progenitor was a triple star system comprised of a close binary and a distant tertiary companion. Until better proper motions become available, we consider LP400–22 to be most likely a halo star with a very unusual orbit
    • 

    corecore