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2D depletion

Diffusion, phase behavior and gelation in a two-dimensional layer of
colloids in osmotic equilibrium with a polymer reservoir

Sam E. Griffiths,1 Nick Koumakis,1 Aidan T. Brown,1 Teun Vissers,1 Patrick B. Warren,2 and Wilson C. K. Poon1
1)School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD,
United Kingdom
2)Hartree Centre, Science and Technology Facilities Council (STFC), Sci-Tech Daresbury, Warrington, WA4 4AD,
United Kingdom

(Dated: 10 August 2021)

The addition of enough non-adsorbing polymer to an otherwise stable colloidal suspension gives rise to a variety of
phase behavior and kinetic arrest due to the depletion attraction induced between the colloids by the polymers. We
report a study of these phenomena in a two-dimensional layer of colloids. The three-dimensional phenomenology of
crystal-fluid coexistence is reproduced, but gelation takes a novel form, in which the strands in the gel structure are
locally crystalline. We compare our findings with a previous simulation and theory, and find substantial agreement.

I. INTRODUCTION

Adding non-adsorbing polymers to a suspension of hard-
sphere colloids (radius R, volume fraction φc) induces a deple-
tion attraction between the particles.1–3 Exclusion of polymers
from the space between two nearby particles leaves an unbal-
anced osmotic pressure pushing them together. The depth and
range of the depletion attraction Udep(r) between two parti-
cles with centre-to-centre distance of r is proportional to the
polymer activity, ap, and the polymer’s radius of gyration, rg,
respectively. When the size ratio ξ = rg/R . 0.30± 0.05,4,5

the equilibrium (φc,ap) phase diagram displays an expanded
region of fluid-crystal (F-X) coexistence at ap & O(10−1),6

which occurs for 0.494 < φc < 0.545 at ap = 0.
‘Buried’ within the equilibrium F-X coexistence region is

a metastable gas-liquid (G-L) coexistence binodal that termi-
nates at a critical point. A homogeneous sample inside this
binodal should in principal first phase separate into metastable
coexisting G-L phase, before further separating into equilib-
rium F-X coexistence.7 This scenario is, however, seldom ob-
served, because kinetic arrest intervenes.

For 0.1 . φc . 0.3, samples inside the metastable G-L co-
existence region will phase separate by spinodal decomposi-
tion into a bicontinuous structure. With time, this structure
coarsens in length scale, and the concentration difference be-
tween the two phases increases, until the concentration of the
liquid phase crosses the ‘attractive glass transition’. line8 The
texture arrests and the system becomes a gel.9,10

Such ‘depletion gels’ have been intensively studied for
some time, but mysteries remain, perhaps especially how they
age with time. In some cases, a depletion gel can undergo sud-
den gravitational collapse after an apparently quiescent period
in which little seems to happen macroscopically.11–14 This
and other aging phenomena are expected on thermodynamic
grounds. A depletion gel is metastable. There is therefore
a driving force for evolution towards the lowest free energy
state, which is F-X coexistence.

What we have summarised so far pertains to bulk colloid-
polymer mixtures. At first sight, there is little incentive to
study two-dimensional (2D) systems: presumably, any differ-
ence to bulk behavior would be merely quantitative. However,
this intuition turns out to be incorrect.

An early 2D study extended the ‘primitive’ theory for bulk
phase behavior4 to calculate the phase diagram of a bulk
colloid-polymer mixture in the presence of a hard wall.15

The theory predicts that depletion-induced wall adsorption in-
duces wall freezing (= crystallization) at depletant concentra-
tions below the bulk F-X coexistence boundary. An inter-
esting subtlety, Fig. 1(a), is that both colloids and depletants
at the surface are in osmotic equilibrium with the bulk, with
which they can exchange both species. Thus, unlike in the
bulk, which is a canonical ensemble where F-X coexistence
is possible, surface crystallization occurs in a grand-canonical
ensemble, so that the crystal fraction jumps from 0 to 1 at
the critical bulk polymer concentration (at fixed colloid vol-
ume fraction). Experiments using large (RL = 0.23µm) and
small (RS = 0.035µm) charge-stabilised polystyrene spheres
(screening length ≈ 5nm) in which the small spheres act
as depletants16 confirmed this feature, and found reasonable
agreement with theory for the wall crystallization boundary.

The sedimentation height z0 of the large spheres in these
experiments, defined such that the number of particles of ra-
dius R in a dilute suspension decreases with height accord-
ing to n(z) = n(0)e−(z−R)/z0 , is z0 = 160µm � RL, as as-
sumed in the theory.15 Two other experiments used much
lower z0/R. Savage et al.17 used R = 0.7µm polystyrene
spheres (z0 ≈ 8R) with non-ionic surfactant micelles as de-
pletants. Hobbie18 studied binary polystyrene colloids with
RL = 1.45µm (z0 ≈ 0.4RL) and RS = 0.107µm. In each case,
gravity and the particle-wall depletion attraction sufficed to
confine all of the large particles to an effectively 2D layer (at
low enough bulk concentration).

Now, the surface layer is a canonical ensemble of a fixed
number of large particles, but a grand-canonical ensemble of
the smaller depletants, which freely exchanges with the bulk,
Fig. 1(b). In this ‘semi-grand canonical’ scenario,19 wall crys-
tallization takes the form of F-X coexistence, with an increas-
ing crystal fraction as the bulk concentration of depletants
(which controls the surface depletant chemical potential) in-
creases. This is indeed seen in experiments,17,18 where crys-
tal nucleation is two-stepped, proceeding via an intermediate
gas-liquid phase separation, as predicted by theory.7. Such ki-
netics is seldom seen in bulk, where the metastable gas-liquid
critical point nevertheless enhances crystal nucleation.20
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FIG. 1. Different ensembles for 2D colloid-depletant mixtures,
with the depletant represented as polymer coils, but they can
also be smaller colloids or micelles. (a) Colloids with z0 � R.
Grand-canonical for both colloids and depletants in the wall layer
(bottom),16 with exchanges of both species with the bulk (blue and
red double arrows). (b) Colloids with z0 . R. Grand-canonical for
the depletants in the surface layer, which exchange with the bulk
(blue double arrow); but canonical for the colloids, which are all
sedimented, with no exchange with the bulk.17,18

Cerdà et al. have simulated a system mimicking a 2D
colloid-polymer mixture: nearly-hard disks interacting via
an Asakura-Oosawa (AO) potential, which is widely used to
model polymer-induced depletion.3 They worked at a size ra-
tio ξ = 0.1, and probed the behavior at a surface colloid area
fraction ηc = 0.157. Cerdà et al. found F-X coexistence when
the contact value of the AO potential, U0 ≥ 3.130kBT . At the
even higher U0 = 7kBT , they observed ramified clusters with
fractal dimension df ≈ 1.4, the exponent for diffusion-limited
cluster aggregation (DLCA). However, the local structure of
the cluster strands is, unlike DLCA, clearly crystalline. This
finding has yet to be confirmed by experiments.

Here, we study a 2D colloid-polymer mixture in which
we quantify the degree of two-dimensionality by comparing
diffusivities next to a wall against Faxén’s prediction.21–23

The equilibrium phase diagram is obtained and compared
with theory.15 We confirm the locally-crystalline nature of the
ramified clusters at the highest attractions.24 Quantitatively,
the time dependence of the average cluster size n̄ ∼ tz, with
0.5 . z . 0.6. We discuss the possible origin of this exponent
in the screened near-wall hydrodynamics of clusters, and pro-
pose why the local structure of our ramified clusters are crys-
talline, in striking contrast to the case of 3D depletion gels.25

II. MATERIALS AND METHODS

We used 1.5 µm diameter (2R) silica spheres (Bangs Labo-
ratories, density ρ ≈ 2gcm−3). The work we report is part of a
larger program26 studying the effect of self-propelled particles
on colloidal gels, where the self-propelled particles are motile
Escherichia coli bacteria,27 for which we need to know the
behavior of the cell-free system. We therefore dispersed our
colloids in a phosphate motility buffer (PMB) commonly used
to study motile E. coli (6.2mM K2HPO4, 3.8mM KH2PO4

and 0.1mM EDTA at pH ≈ 7.5). We removed the NaCl usu-
ally included in standard PMB to limit the ionic strength to
I = 22.4mM (screening length 2 nm). Under these conditions,
our colloids do not visibly aggregate, so that any residual in-
terparticle attraction is . kBT . The colloids sediment rapidly
as single particles to the bottom of our sample chambers. Bulk
volume fractions of 10−4 . φc . 2× 10−3 gave surface area
fractions of 0.04 . ηc . 0.8.

To induce depletion attraction, we added sodium
polystyrene sulphonate (NaPSS, Mw ≈ 106 Da; Sigma
Aldrich, used as purchased). NaPSS behaves as a ideal neu-
tral polymer in a medium with I = 3.1M, while at I = 0.15M
we have a good solvent.28 We therefore expect swollen coils
in our PMB. We estimated the overlap concentration as the
inverse intrinsic viscosity,29 which came from extrapolating
Kraemer and Huggins plots of the measured viscosity as a
function of polymer concentration,29,30 giving c∗p≈ 0.44wt%.
From this, we estimate a radius of gyration, rg, of NaPSS in
PMB using

c∗p =
3Mw

4πr3
gNA

, (1)

where NA is Avogadro’s constant, giving rg ≈ 45nm, and a
colloid:polymer size ratio of ξ ≈ 0.06.

The contact depletion attraction, U0, is proportional to the
polymer activity, ap, which in turn scales as the polymer
concentration in a reservoir in osmotic equilibrium with the
colloid-polymer mixture.3,4 In our system, this is well approx-
imated by the bulk polymer concentration. This we report as
a polymer volume fraction, φp, estimated using a coil volume
of 4πr3

g/3, so that overlap, Eq. (1), corresponds to φp = 1. We
work in the range 0≤ φp ≤ 0.4.

We sealed samples into 400 µm-high glass capillaries and
aged them for ≈ 2h before video recording in a Nikon Ti-
Eclipse inverted microscope, typically using a ×50 objec-
tive to resolve single particles. We tracked particles using a
Mikrotron high-speed camera (MC 1362) to determine bulk
and near-wall diffusivities. A Hamamatsu Orca 4.0 CMOS
camera was used to identify clusters, from which we obtained
information on nearest neighbors, defined as all of a parti-
cle’s neighbors whose centres are within 2R+2rg +0.1µm≈
1.7µm, where the 0.1 µm accommodates polydispersity. We
also used a ×10 (N.A. = 3) objective to obtain images in
which single particles were not resolved. We thresholded
these images, identified clusters and calculated their areas us-
ing custom software. Results for small clusters from the two
methods agree up to a scaling constant between cluster area
in (pixel)2 and particle number. The calibrated low-resolution
method gives better statistics, especially for larger clusters.

III. THEORY

Previously, a mean-field van der Waals free-volume theory
was used to predict the wall freezing transition in a grand
canonical system.16 In our semi-grand canonical ensemble,
Fig. 1(b), the approach simplifies considerably, as there is no
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need to equilibrate colloids in the wall layer and the bulk. The
semi-grand canonical free energy F with ideal depletants is

F = F0−ρdkBT 〈Vfree〉0, (2)

where F0 is the free energy of a reference system of 2D-
confined hard spheres, and 〈Vfree〉 is the volume available to
depletants of bulk number density ρd averaged over the po-
sitions of the colloids in the reference system. The deple-
tants are mutually non-interacting (ideal), and exert an os-
motic pressure ρdkBT in the bulk, which acts as a reservoir.
They cannot approach ≤ rd to the surface of a colloid.

For F0 we use published free energies of the hard disc fluid
and hexagonally-ordered crystal31 that account well for two-
dimensional freezing. For the former (cf. Eq. (18) in Ref. 31):

F(fluid)
0

NckBT
= ln

[
4ηc

π

]
−1− ln(1−ηc)+

ηc

1−ηc
, (3)

where ηc is the area fraction of colloids. After the first two
ideal terms, the next two terms give the excess free energy
per particle after Rosenfeld.32 For the 2D crystal, we follow
Hall’s procedure for 3D hard-sphere crystals33 and fitted

F(crystal)
0
NckBT

= ln
[

4ηc

π

]
−1+ c0 + c1βc−2lnβc (4)

to the 2D crystal curve in Fig. 2 of Ref. 31 Here, βc = 4(1−
ηc/ηmax) where ηmax = π

√
3/6 ≈ 0.907 is hexagonal close-

packing. Least-squares fitting gives c0 ≈ 3.08 and c1 ≈ 0.30.
As expected, as ηc → ηmax, βc → 0 and Fcrystal

0 → ∞. With
Eqs. (3) and (4) we find coexistence between 2D F-X coexis-
tence for 0.670 < ηc < 0.732, agreeing with Ref. 31.

For the free volume we use the standard expansion,3

Vfree = const−NcV1 +∑ i> j V2(ri j)+ . . . (5)

where V1 is the excluded volume for an isolated colloidal par-
ticle allowing for the overlap with the depletion layer at the
wall, V2(r) is the overlap of the excluded volumes for a pair
of colloids with centre-to-centre distance r, and we sum over
all pairs of particles {i, j}. We do not require first two terms:
they only contribute constants to the pressure and chemical
potential that do not affect phase behaviour in the semi-grand
ensemble. This is in contrast to the wall freezing transition
in a bulk colloidal suspension where the absolute value of the
colloid chemical potential is required, including the contribu-
tion from V1, to solve for the bulk-wall equilibria.16

Despite 2D colloidal confinement, the volumes in Eq. (5)
are 3D, which precludes the use of scaled particle theory to
estimate 〈Vfree〉0. However, there will be no three-body over-
laps of the depletion layers of three spheres if rd/R = ξ <

2/
√

3− 1 ≈ 0.1547,34. Moreover, there is no overlap of the
depletion layers of two particles and the wall if ξ < 1/4. Both
conditions are satisfied in our case. So, we terminate Eq. (5)
at the 2-body term and use the standard AO result

V2(r) =
4π(R+ rd)

3

3

(
1− 3r

4(R+ rd)
+

r3

16(R+ rd)3

)
. (6)

fluid

crystal
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FIG. 2. Phase behaviour of 2D-confined colloids in the presence of
non-adsorbing ideal depletants of exclusion radius rd in the semi-
grand canonical ensemble for ξ = rd/R = 0.06, calculated using the
approach described in the text. Horizontal tie lines span the F-X
coexistence region. The dashed line is the limit of thermodynamic
stability of the fluid phase (spinodal). The chained line is the fluid
binodal estimated using the simplified approach in Appendix A.

To average Vfree over the reference system, we write

〈Vfree〉0
A

= const− ηcV1

πR2 +
1
2

(
ηc

πR2

)2 ∫ 2(R+rd)

2R
2πr drV2(r)g(r)

(7)
where g(r) is the radial distribution function of hard discs in
the reference system, for which we we use the heuristic ap-
proximation

g(r) = gc +(1−gc)
r−2R

λR
, (8)

where λ captures the decay of g(r) from gc ≡ g(2R) at con-
tact. We use gc = (2−ηc)/2(1−ηc)

2 from scaled particle
theory,35 consistent with Eq. (3) and the sum rule for the
pressure in hard disc systems.36 For simplicity we use Eq.
(8) in both the fluid and hexagonally-ordered crystal. For
the fluid phase we use λ = 0.5 (our results are insensitive to
0.2 ≤ λ ≤ 1). This corresponds to the typical contact peak
in the radial distribution function in a dense fluid.37 For the
hexagonally-ordered crystal phase, λ = 0.1 ensures that the
effective co-ordination number is around 6 at ηc ≈ 0.85.

Substituting Eq. (8) into Eq. (7) we find a dimensionless
specific (i.e. per unit area) free volume

〈Vfree〉0
A(2R)

= const− V1ηc

2πR3 +ξ
3(Pgc +Q)η2

c . (9)

where Q = 2ξ (1 + 6ξ/5 + ξ 2/3)/3λ and P = 4(1 + ξ +
ξ 2/5)/3−Q. Finally, combining Eqs. (2) and (9), we find
a dimensionless specific semi-grand free energy

(2R)2F
AkBT

=
4ηcF0

πNckBT
−ρp(2rd)

3(Pgc +Q)η2
c , (10)

The constant and term linear in ηc have been dropped from
Eq. (9), and the multiplicative factor ξ 3 in the final term yields
the (2rd)

3 which non-dimensionalises ρp in the above.
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FIG. 3. Diffusivity of our silica colloids next to a wall, D, as a func-
tion of polymer volume fraction, φp. Experimental data from particle
tracking (•) and prediction using Eq. (17) (×Eq). Uncertainties in
the experimental data are smaller than the size of the symbols used.
Inset: predicted average gap between particle (in nm) and wall as a
function of φp.

Equation (10) with Eqs. (3) and (4) are solved numeri-
cally for phase coexistence as ρp increases. A typical result
is shown in Fig. 2 for size ratio ξ = 0.06. Ideal depletants
broaden the two-phase region as in the bulk,3,4 with the on-
set of the effect being at around φd = πρd(2rd)

3/6 . 0.1. We
later compare this prediction to our experiments by identify-
ing (rd,φd) with (rg,φp).

The limit of thermodynamic stability in the fluid can be
found as the locus of points where d2F/dη2

c vanishes. This
gives the dashed ‘spinodal’ line in Fig. 2 (the fluid is unsta-
ble to the right of the line). Finally, the chained line shows
the prediction of the fluid binodal using a simplified approach
in which we only take into account the cohesive polymer-
induced AO ‘bond’ energies in the crystal (see Appendix A).

IV. EXPERIMENTAL RESULTS

A. 2D Confinement

At a density difference of ∆ρ ≈ 103 kgm−3 with PMB, our
particles sediment at ≈ 1µms−1. A dilute suspension takes
& 10min to establish steady state in a 400 µm-high capillary,38

to give a height-dependent particle density (at φp = 0)39 of
n(z) = n(0)e−(z−R)/z0 , with a calculated z0 = 0.23µm. The
confinement is further increased when polymer is added to in-
duce a depletion attraction between the particles and the bot-
tom capillary surface. So, we study an essentially two dimen-
sional (2D) layer of colloids at the bottom capillary surface.

To quantify the confinement, we determined low φc diffu-
sivities by tracking. The bulk diffusivity D0 = 0.28µm2 s−1

calculated from the Stokes-Einstein relation is reduced by
near-wall hydrodynamics to

D = αD0, (11)

with α < 1, Fig. 3. Stronger attraction reduces D by lower-
ing the particle-wall distance and so increases hydrodynamic

hindrance. Faxén’s approximate calculation predicts21–23

α(z) =
D
D0

= 1− 9
16

R
z
+

1
8

(
R
z

)3

− 45
256

(
R
z

)4

− 1
16

(
R
z

)5

. (12)

In the dilute limit, the probability of finding a particle at z
above the wall scales as e−Utot(z)/kBT , where the total potential
experienced by a near-wall particle is

Uw
tot(z)
kBT

=

 ∞ z≤ R
Uw

d (z)+Ug(z) R < z < r+2rg
Ug(z) R > z+2rg

. (13)

Here,

Ug(z)
kBT

=
z−R

z0
(14)

is the gravitational potential, and

U (w)
d (z)
kBT

=−

(
3φp

4r3
g

)
R
(
2rg− z+R

)2 (15)

is the particle-wall depletion interaction.3 We define a dimen-
sionless magnitude of the depletion potential at contact

u(w)0 =

∣∣∣∣∣U
(w)
d (z = R)

kBT

∣∣∣∣∣= 3φp

ξ
. (16)

The near-wall average diffusivity should be given by

D̄ =
D0
∫

∞

0 α(z)e−Uw
tot/kBT dz∫

∞

0 e−Uw
tot/kBT dz

× µ0

µp
, (17)

taking into account the increased viscosity of the polymer so-
lution, µp, relative to that of PMB, µ0, both of which we mea-
sured using standard rheometry.

Equation (17) gives a reasonable account of our data, Fig.
3, although it systematically overestimates the confining ef-
fect. This may be due to the approximations involved in
Faxen’s formula for the hydrodynamic factor, Eq. (12) and
the Asakura-Oosawa form of the depletion potential, Eq. (15).
The calculated average gap z̄−R between a particle and the
surface, where z̄ is obtained from Eq. (17) with β (z) replaced
by z, drops from 0.23 µm at φp = 0 to 2.5 nm at φp = 0.836,
Fig. 3 (inset). Our system, especially at φp > 0, is indeed
highly confined to a thin 2D layer, with the smallest gap be-
ing comparable to the expected roughness of our particles.40,41

This exercise also validates the use of the AO expression un-
der our conditions for the polymer-induced attraction between
two spherical particles, for which Eq. (15) is a special case
(taking one sphere to have infinite radius).

B. Phase diagram and cluster statistics

Visually, our system shows four regimes, Fig. 4(a). At
(φp . 0.15,ηc . 0.6), we find single particles and transient
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FIG. 4. (a) Equilibrium phase diagram of our system. The identity
of the different phases are given in the legend. The dashed lines are
drawn by hand to demarcate different behaviors. The full lines re-
produce the phase boundaries given in Fig. 2. The open squares and
triangles denote the onset of crystallisation and gelation as identified
from part (c) of this Figure and explained in the text. (b) Single-
phase fluid, where the scale bar represents 50 µm and the inset scale
bar represents 10 µm. (c) Fluid-crystal coexistence. (d) Ramified
cluster with crystalline local structure. (e) The bond orientation or-
der parameter, Ψ6, as a function of polymer volume fraction, φp at
three different values of ηc (see legend). At each ηc, three kinds of
behavior are delineated, demarcated by where Ψ6 rises sharply, e.g.
as quantified by where it reaches 0.2 (dashed line), and by where Ψ6
peaks (arrows).

cluster with n . 4 particles, Fig. 4(b). This is a colloidal fluid.
At higher ηc or φp, we observe F-X coexistence of single par-
ticles and colloidal crystallites, Fig. 4(c). At the highest φp
and ηc . 0.75, we observe ramified clusters whose strands
are crystalline, Fig. 4(d). Finally, at ηc & 0.75, we observe a
polycrystalline monolayer over a small range of φp.

We quantified the degree of crystallinity of our system via
the bond orientation order parameter

Ψ6 ≡
〈
|q6(i)|2

〉
. (18)

This is the all-particle average of the squared single-particle

bond orientation parameter, which, for particle i and its set of
Ni nearest neighbours, is given by

q6(i) =
1
Ni

Ni

∑
j=1

ei6θi j , (19)

where θi j is the angle between the centre-to-centre vector
from particle i to j and an arbitrary fixed axis. Perfect crys-
tallinity gives Ψ6 = 1.

Consider first the data for ηc = 0.19, Fig. 4(e). At φp = 0,
Ψ6 = 0. Increasing the polymer concentration, we find Ψ6 re-
maining low until φp≈ 0.14, whereupon Ψ6 increases sharply,
evidencing transition to F-X coexistence. The same behavior
occurs at ηc = 0.30 and 0.39. We take the transition to F-
X coexistence in each case to be the first data point where
Ψ6 ≥ 0.2. These points, open squares in Fig. 4(a), agree
well with the phase boundary determined by inspecting mi-
crographs. At each ηc studied, Ψ6 reaches at sharp peak of
. 0.8, and then falls. This is the onset of progressively more
ramified crystalline clusters with increasing fraction of edges.
We argue below that at long times, these clusters will percola-
tion to form a gel. We therefore take the peak position in Ψ6
as the gel boundary, 4 in Fig. 4(a), which again agrees with
the visually-demarcated onset of ramified clustering.

In the ramified cluster regime, we measured cn, the number
of clusters of size n. Figure 5(a) shows how cn normalised
by the total number of clusters c (so that ∑n cn/c = 1) evolves
with time for a sample with ηc = 0.2 and φp = 0.326. From
these cluster size distributions (CSDs), we extracted the aver-
age cluster size n̄(t), Fig. 5(c), which increases throughout our
experimental time window. In particular, n̄ is still increasing
at the end of our observation period, albeit at a reduced rate
compared to the beginning. Each surface rearrangement to
compactify these ramified clusters involves the simultaneous
breaking ∼ 3 ‘bonds’ of & 4kBT each. It is therefore likely,
though not certain, that our system will eventually percolate at
long times to form a gel. We therefore identify the transition
from F-X to ramified clusters as a putative gel boundary.

V. DISCUSSION

A. Equilibrium phase behavior

Apart from a difference in size ratio, our system should be
directly comparable to the simulations by Cerdà et al.,24 who
studied nearly-hard particles at ηc = 0.157 interacting via an
AO attractive potential with dimensional range ξ = 0.1 (we
have ξ = 0.06). At U0 = 3.130kBT , they observed a tran-
sition from ‘small fluctuating clusters’ – our fluid phase –
to large hexagonal close packed clusters in a background of
single particles – our F-X coexistence. Our transition from
fluid to F-X coexistence occurs at φp . 0.16, corresponding
to U (c)

0 . 4kBT , where U (c)
0 =U (w)

0 /2 (cf. Eq. (16)) is the di-
mensionless colloid-colloid depletion attraction at contact.3

Next, we compare our experimental phase diagram with the
theory outlined in Section III. To do so, we need to relate the
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FIG. 5. Cluster statistics at ηc = 0.2 and φp = 0.326, which is in the
ramified clusters regime. (a) Raw normalised cluster size distribu-
tion, cn(t), at different times as in legend (in minutes). (b) Scaled
normalised cluster size distribution according to Eq. (20). Blue =
data sets for 10min < t < 100min Red = later data sets. Continu-
ous curve = fitting of blue data sets to Eq. (21), giving λ = −0.76.
(c) Evolution of average cluster size with time. The line has slope
z = (1− λ )−1 = 0.568. The blue data in (b) are from the interval
between the vertical lines.

exclusion radius of the depletant, rd, to a property of the poly-
mer in our system. Clearly, rd = crg for some dimensionless
constant c. The result for taking c = 1, so that φd = φp, is
plotted in Fig. 4(a). (Taking c = 1 means we reproduce Fig.
2 in Fig. 4(a).) The theory gives a credible account of the
shape of the F-X boundary for ηc < 0.67 (where hard disks
freeze). Quantitatively, the agreement is much better than or-
der of magnitude. Such agreement is significant. Our the-
ory predicts the onset of significant depletion effects on the

F-X transition occurs at ρp(2d)3 ∼ O(1), because it is this
particular dimensionless combination that enters the free en-
ergy in Eq. (10). If our model incorporates wrong physics,
then another length, the colloid radius R, may also enter into
the non-dimensionalisation of φp, potentially altering the pre-
dicted phase boundary by a factor of ξ , ξ 2 or ξ 3. Given that
our ξ ∼ O(10−1), the good agreement we find without fine
tuning c confirms that depletion correctly captures the essen-
tial physics of the phase behavior in our system.

It is interesting to compare our phase diagram with the 3D
case. We do so via the second virial coefficient, B2, which is
often used to compare results for potentials of different shapes
in the same spatial dimension.42 In our case, we normalise B2
by the hard-sphere or hard-disk values in 3D and 2D to give
a dimensionless b2.43 The F-X coexistence boundary for a 3D
colloid-polymer mixture at φc < 0.494 (the onset of bulk crys-
tallization) occurs at b(3D)

2 ≈−0.67, which is also the crystal-
lization threshold for many globular protein solutions.44 In-
terestingly, our F-X boundary at φp ≈ 0.16, Fig. 4(a), corre-
sponds to b(2D)

2 ≈ 0.72. Backing out an equivalent φp = 0.21
for the ξ = 0.1 system of Cerdà et al. via U (c)

0 =
3φp
2ξ

, we find

that their F-X transition occurs at b(2D)
2 = 0.74. This agrees

with our experimental value, but differs significantly from the
3D value of ≈ −0.67. Thus, in 2D, the depletion attraction
does not have to be as strong to bring the system into F-X
coexistence. In this sense, crystallization is easier in 2D.

Finally, we note that Li et al. reported an experimental
study of a system of sedimented PMMA colloids (2RL =
3.27µm) with depletion attraction induced by smaller (2RS =
0.192µm) PMMA colloids (giving ξ = 0.05).45 In contrast to
our experiments and theoretical prediction, where the F-X co-
existence region expands rather suddenly at φp ∼ 10−1, Fig.
4(a), their F-X coexistence expands gradually from the φp = 0
region. We do not at present understand the origins of this
difference, and will not discuss their findings further.

B. Gelation

There is no energy barrier to aggregation in the depletion
potential, so that particles coming within the attractive range
of each other will always ‘bond’: this is the essential ingre-
dient of DLCA. Initial clusters can therefore expected to be
ramified. Our observations imply that reorganization after ini-
tial aggregation in our system produces clusters that are crys-
talline. Once these clusters have grown beyond a few particle
diameters, the rigidity of the locally crystalline backbone pre-
vents large-scale restructuring, and the clusters become ram-
ified objects, which however have crystalline local structure,
Fig. 4(d). This contrasts with 3D gelation, where such reorga-
nization produces clusters that are locally amorphous.46 This
is because such reorganization in the two cases ‘finds’ dif-
ferent minima. In 3D, there exist locally-favoured structures
(icosahedra, etc.) that are denser (and therefore lower in en-
ergy) than crystalline packing and cannot tessellate space.46

This contrasts with 2D, where the locally-favoured triangular
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arrangements can tessellate space, and indeed essentially form
the unit cell for hexagonal-close-packed crystals. That is why
our clusters are locally-crystalline.

In 3D, gelation in colloid-polymer mixtures is triggered by
a coarsening spinodal gas-liquid phase separation texture that
kinetically arrests. In our system, the theoretical fluid spin-
odal (dashed line in Fig. 2) occurs far above the experimental
gel boundary, Fig. 4(a). However, the spinodal is where den-
sity fluctuations diverge. At this point, the the mean field-van
der Waals approximation implied by Eq. (2) that underpins the
free volume theory is questionable since the two terms in Eq.
(2) are likely to be of the same order of magnitude. We there-
fore cannot rule out that the onset of ramified structures is still
co-incident with an underlying spinodal-like thermodynamic
transition in the fluid.47

Cerdà et al.24 found ramified, locally-crystalline clusters at
U0 = 7kBT at ηc = 0.2, which is consistent with our data,
Fig. 4(a), where φp = 0.25 corresponds to a contact attraction
of 6.25kBT . Their CSD data collapsed according to the ansatz

cn(t) = M1[s(t)]−2 f [n/s(t)] , (20)

where Mk = ∑n nkcn is the k-th moment of the CSD, and
s=M2/M1 is a measure of the (time-dependent) average clus-
ter size. We attempt this scaling for our data, Fig. 5(b). The
resulting f for the earliest time, t = 6min (≈ 36× the time for
a single particle to diffuse its own diameter), does not show
the same peaked behavior as data from all other times. We
exclude these data from further consideration. Equation (20)
collapses data from 10min . t . 100min, into a universal f
that is peaked, Fig. 5(b) [blue]. Data from t & 100min, Fig.
5(b) [red], are increasingly noisy, and show systematic devia-
tions from a single universal curve, especially at n/s & 2.

A scaling analysis by van Dongen and Ernst48 suggests that
the function f in Eq. (20) should take the form

f (x) = Ax−λ e−ax, (21)

where λ is the homogeneity exponent, defined such that if
dcn/dt = 1

2 ∑i+ j=n A(i, j)c jci −∑
∞
j=1 A(n, j)cnc j (a Smolou-

chowski equation), then A(mi,m j) = mλ A(i, j). We fitted
this form to the red data in Fig. Fig. 5(b) to obtain λ ≈
−0.76±0.05 (and A = 2.65±0.2×106, a = 2.58±0.05).49

Further kinetic scaling arguments by Kolb50 predict that
the mean aggregation number in d-dimensional DLCA grows
with time as n̄(t) ∼ tz, where the dynamic critical exponent
z = df/(df− (d− 3)), and df is the fractal dimension of the
ramified clusters. Importantly, it can be shown that

z =
1

1−λ
, (22)

so that λ = (d−3)/df. For two-dimensional DLCA,51,52 df ≈
1.4 implies λ ≈−0.71, which is close to our fitted value.

The above assumes that the cluster mobility is inversely
proportional to the cluster radius (i.e. α =−d−1

f in Eq. (1) in
Kolb) but there are reasons to believe that the far-field hydro-
dynamic interactions may be screened for wall-bound clus-
ters (see Appendix B) which would instead make the clus-
ter mobility ultimately inversely proportional to the aggrega-
tion number (α =−1 in Kolb) yielding z = 1/2 and λ =−1.

The best fit of Eq. (20) with the constraint λ = −1 is al-
most visually indistinguishable from the unconstrained best-
fit λ = −0.76 on the scale of Fig. 5(b). Our data therefore
cannot distinguish between these two models.

Our best-fit value λ = −0.76 differs from Cerdà et al.24

who find λ = −0.35, but this exponent is sensitive to de-
tails such as the system concentration. More importantly, we
should seek internal consistency in the form of Eq. (22). For
λ = −0.76, we expect z = 0.568. This dynamical exponent
gives a reasonable account of our intermediate-time n̄(t) data,
Fig. 5(c). On the other hand, it is clear that our data will not
be able to decide between this exponent and the value z = 1/2
expected with near-wall hydrodynamic screening.

Systematic deviations from a pure power-law behavior oc-
curs at the end of the intermediate time window and beyond,
Fig. 5(c). As time went on, particles increasingly adhered to
the capillary surface, especially at higher φp. This is not sur-
prising, considering the small particle-wall gaps inferred from
diffusivity, Fig. 3 (inset). The probability of adesion increases
with cluster size n. An adhered cluster can no longer diffuse
translationally, and has, at best, restricted rotational diffusiv-
ity. Such adhesion will cause deviations from either of the
predicted modes of dynamical scaling.

VI. SUMMARY AND CONCLUDING REMARKS

We have studied experimentally a layer of colloids at the
bottom of a glass capillary in the presence of smaller poly-
mers. The combination of gravitational sedimentation and the
depletion attraction induced between the spheres and the wall
tightly confined the spheres to a 2D layer, in which we have
been able to deduce the sphere-wall gap from fitting measured
diffusivities to a hydrodynamic theory.21–23

The depletion attraction between the spheres induced by the
polymers drives them into F-X coexistence at colloid concen-
trations ηc very much lower than that needed for 2D crys-
tallization (ηc = 0.67) in the absence of polymers. A free-
volume theory15 adapted to our semi-grand canonical system
gives a good account of the F-X coexistence boundary.

At high polymer concentration, the depletion attraction
drives the formation of ramified clusters that are locally crys-
talline, confirming a previous simulation.24 However, the clus-
ter size distribution and cluster growth dynamics show quanti-
tative differences with these simulations, which we speculate
as due to particle adhesion and/or the screening hydrodynamic
interactions by the wall. Future simulations may explore the
validity of these proposals.

The 500-word 1954 letter by Asakura and Oosawa pub-
lished in this journal14 together with Vrij’s later detailed treat-
ment based on the AO picture2 marked the start of modern
research into depletion-driven phenomena. A first theoretical
account of the phase behavior in colloid-polymer mixtures in-
tegrates out the polymeric degrees of freedom and uses an AO
potential for the inter-particle interaction.53 Later, a ‘primitive
model’ that takes explicit account of the polymers’ centre-of-
mass degrees of freedom successively predicts polymer parti-
tioning in coexisting phases.4 Its applicability was confirmed
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by bulk experiments.5 Interestingly, this primitive model uses
a semi-grand canonical ensemble19 as a calculational device.

It is gratifying that seven decades from ‘AO’ and three
decades from the semi-grand canonical model, we are able to
perform experiments in a well-characterized ensemble of this
kind, fit our dynamical (diffusion) data by appealing to an AO
form of the interaction between particles and wall, Fig. 3, and
account for the equilibrium phase behavior using a modified
version of the original primitive model, Fig. 4(a).
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Appendix A: Approximate estimate of fluid binodal

In the presence of non-adsorbing polymers the cohesive
free energy of the hexagonally-ordered crystal can be approx-
imated by calculating the energy required to break the AO
‘bonds’, as in a solid-state physics problem.54 By matching
this to the colloid chemical potential in the fluid phase, one
can estimate of the location of the fluid binodal. Let the crys-
tal co-ordination number be z. Then

F(crystal) ≈ F(crystal)
0 − zNc

2
×ρpkBT V2(2R) (A1)

where the second factor in the second term is the AO bond free
energy, and for simplicity we use the contact value of V2(r).
Equating the resulting colloid chemical potential to that in the
two-dimensional fluid derived from Eq. (3) gives

ln
(

ηc

1−ηc

)
+

ηc(3−2ηc)

(1−ηc)2 =
µ0

kBT
− z

2
×ρpV2(2R) (A2)

where µ0 is the chemical potential in the unperturbed crystal,
which in the spirit of the approach we shall suppose constant.

For simplicity we neglect the excluded volume overlaps in
the fluid (one can show that they are small) and tacitly omit
the V1 terms which contribute only a common constant to the
chemical potentials. Since at coexistence the chemical po-
tentials of the fluid and crystal are the same, µ0 can be ob-
tained from the known fluid coexistence composition in the
absence of added polymer, viz. Eq. (A2) should be verified by
ηc ≈ 0.670 at ρp = 0. Solving Eq. (A2) (with z = 6) for ηc as
a function of ρp then provides an estimate of the fluid binodal,
shown for the present system as the chained line in Fig. 2.

Appendix B: Hydrodynamic interactions

We present heuristic arguments that in a wall-bound cluster
containing N particles, the wall ‘screens’ the hydrodynamic
interactions such that the cluster mobility ∼ 1/N, at least in
the scaling limit. We start with the familiar result that a point
force f in an unbounded fluid generates a velocity field v at a
distance r with (Oseen tensor)55

v =
1

8πµr
(I+ r̂ r̂) · f . (B1)

In this I is the unit tensor, r̂ = r/r with r = |r|, and µ is the
fluid viscosity. Similarly, Blake and Chwang showed that a
point force at a height h above the wall generates a flow field
which behaves to leading-order in far-field as56

v =
12hz

8πµr3 r̂ r̂ · f (B2)

Here, the no-slip boundary condition is coincident with the
z = 0 plane, and r = (x,y) is now the in-plane distance be-
tween the point (x,y,z) where the velocity is measured and the
point (0,0,h) where the force is applied. Crucially, according
to Eq. (B2), for z ∼ h the far-field decays as 1/r3 rather than
1/r as in Eq. (B1) for an unbounded fluid.57

At this point we recall that the mobility of a fractal clus-
ter is essentially determined by the behavior of 〈1/r n

i j〉 where
the average is taken over all pairs of particles in the cluster,58

and according to the above we should take n = 1 for freely-
suspended clusters or n = 3 for wall-bound clusters. In terms
of the pair distribution function g(r)∼ rdf−d ,

〈1/r n
i j〉 ∼

∫
r−n g(r)rd−1 dr∫

g(r)rd−1 dr
∼ R−n (B3)

where R ∼ N1/df is the cut-off in g(r). But this only holds
when the integral in the numerator is dominated by this cut-
off, which requires df > n. Plainly this is the case for freely-
suspended clusters (unless they happen to be fractal dust with
df < 1), and so one expects that the cluster mobility∼ N−1/df .
This scaling behavior has been widely confirmed,59–61 and
corresponds to the fact that the flow field is screened from
the interior of the cluster. For wall-bound clusters though, it
is not the case that the integral in the numerator in Eq. (B3) is
dominated by the upper limit since that would require df > 3
which is impossible in d = 2 dimensions. Hence one con-
cludes (perhaps a little tentatively!) that hydrodynamic inter-
actions should be negligible in far-field for wall-bound clus-
ters, or in other words the flow field, already screened by the
wall, is not further significantly reduced in the interior of the
cluster. It follows that the frictional drag should be exten-
sive in the number of particles, and the cluster mobility should
scale as ∼ 1/N as claimed.

This conclusion obviously demands numerical verification,
using Stokesian dynamics or similar methods.62–64 For now
though, we close with a couple of remarks higlighting the sub-
tleties of this hydrodynamic problem. First, it is interesting to
note that the mobilities of individual particles are in a sense
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decoupled from the hydrodynamic interactions, since the for-
mer are sensitive to the gap between the particles and the
wall (see section IV A), which can be made arbitrarily small,
whereas the latter are essentially controlled by the heights of
the particle centres above the wall which are limited by the
particle radii. Second, whilst the presence of the wall cou-
ples the rotational and translational modes, in a cluster the
rotational modes are suppressed if the particles are mutually
hindered from all rolling in the same direction (essentially as a
non-trivial consequence of the near-field hydrodynamics). So,
it seems doubtful that the individual particle friction coeffi-
cients are simply additive, but this may not necessarily change
the extensivity of the overall cluster drag coefficient.

Note that none of these considerations undermines the dis-
cussion of our data in terms of DLCA in the main text. The
DLCA model depends essentially on the two-fold combina-
tion of clusters sticking on first contact (irrespective of sub-
sequent local reorganization), and a dominant cluster size in
the cluster size distribution (i.e. a peaked or bell-shaped dis-
tribution). The latter is not only what we observe but also
follows from the Smoluchowski kinetic aggregation model if
the cluster mobility is a decreasing power-law in the aggrega-
tion number.48,50 Thus it obtains irrespective of whether the
mobility ∼ 1/N or ∼ 1/R∼ N−1/df .
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