3,221 research outputs found

    General analysis of self-dual solutions for the Einstein-Maxwell-Chern-Simons theory in (1+2) dimensions

    Get PDF
    The solutions of the Einstein-Maxwell-Chern-Simons theory are studied in (1+2) dimensions with the self-duality condition imposed on the Maxwell field. We give a closed form of the general solution which is determined by a single function having the physical meaning of the quasilocal angular momentum of the solution. This function completely determines the geometry of spacetime, also providing the direct computation of the conserved total mass and angular momentum of the configurations.Comment: 3 pages, REVTEX file, no figure

    On an asymptotic estimate of the nn-loop correction in perturbative QCD

    Full text link
    A recently proposed method of estimating the asymptotic behaviour of QCD perturbation theory coefficients is critically reviewed and shown to contain numerous invalid mathematical operations and unsubstantiated assumptions. We discuss in detail why this procedure, based solely on renormalization group (RG) considerations and analyticity constraints, cannot lead to such estimates. We stress the importance of correct renormalization scheme (RS) dependence of any meaningful asymptotic estimate and argue that the unambiguous summation of QCD perturbation expansions for physical quantities requires information from outside of perturbation theory itself.Comment: PRA-HEP-92/17, Latex, 20 pages of text plus 5 figures contained in 5 separate PS files. Four of them (corresponding to Figs.1,2,3,5) are appended at the end of this file, the (somewhat larger one) corresponding to Fig.4 can be obtained from any of the mentioned E-mail addresses upon request. E-mail connections: J. Chyla - [email protected]) or h1kchy@dhhdesy3 P. Kolar - [email protected]

    Systematic thermal reduction of neutronization in core-collapse supernovae

    Full text link
    We investigate to what extent the temperature dependence of the nuclear symmetry energy can affect the neutronization of the stellar core prior to neutrino trapping during gravitational collapse. To this end, we implement a one-zone simulation to follow the collapse until beta equilibrium is reached and the lepton fraction remains constant. Since the strength of electron capture on the neutron-rich nuclei associated to the supernova scenario is still an open issue, we keep it as a free parameter. We find that the temperature dependence of the symmetry energy consistently yields a small reduction of deleptonization, which corresponds to a systematic effect on the shock wave energetics: the gain in dissociation energy of the shock has a small yet non-negligible value of about 0.4 foe (1 foe = 10^51 erg) and this result is almost independent from the strength of nuclear electron capture. The presence of such a systematic effect and its robustness under changes of the parameters of the one-zone model are significative enough to justify further investigations with detailed numerical simulations of supernova explosions.Comment: 15 pages, 2 tables, 3 figure

    Entropy for Asymptotically AdS_3 Black Holes

    Full text link
    We propose that Strominger's method to derive the BTZ black hole entropy is in fact applicable to other asymptotically AdS_3 black holes and gives the correct functional form of entropies. We discuss various solutions in the Einstein-Maxwell theory, dilaton gravity, Einstein-scalar theories, and Einstein-Maxwell-dilaton theory. In some cases, solutions approach AdS_3 asymptotically, but their entropies do not have the form of Cardy's formula. However, it turns out that they are actually not "asymptotically AdS3AdS_3" solutions. On the other hand, for truly asymptotically AdS_3 solutions, their entropies have the form of Cardy's formula. In this sense, all known solutions are consistent with our proposal.Comment: 21 pages, LaTeX; v2: added discussion for section 3.

    Scale Setting in QCD and the Momentum Flow in Feynman Diagrams

    Get PDF
    We present a formalism to evaluate QCD diagrams with a single virtual gluon using a running coupling constant at the vertices. This method, which corresponds to an all-order resummation of certain terms in a perturbative series, provides a description of the momentum flow through the gluon propagator. It can be viewed as a generalization of the scale-setting prescription of Brodsky, Lepage and Mackenzie to all orders in perturbation theory. In particular, the approach can be used to investigate why in some cases the ``typical'' momenta in a loop diagram are different from the ``natural'' scale of the process. It offers an intuitive understanding of the appearance of infrared renormalons in perturbation theory and their connection to the rate of convergence of a perturbative series. Moreover, it allows one to separate short- and long-distance contributions by introducing a hard factorization scale. Several applications to one- and two-scale problems are discussed in detail.Comment: eqs.(51) and (83) corrected, minor typographic changes mad

    First Direct Measurement of Jets in sNN=200\sqrt{s_{NN}}=200 GeV Heavy Ion Collisions by STAR

    Get PDF
    We present the first measurement of reconstructed jets in ultra-relativistic heavy ion collisions. Utilizing the large coverage of the STAR Time Projection Chamber and Electromagnetic Calorimeter, we apply several modern jet reconstruction algorithms and background subtraction techniques and explore their systematic uncertainties in heavy ion events. The differential spectrum for inclusive jet production in central Au+Au collisions at sNN=200\sqrt {s_{NN}}= 200 GeV is presented. In order to assess the jet reconstruction biases, this spectrum is compared with the jet cross section measured in s=200\sqrt{s}=200 GeV p+p collisions scaled by the number of binary N-N collisions to account for nuclear geometric effects.Comment: Proceedings of the 3rd International Conference on Hard and Electro- Magnetic Probes of High-Energy Nuclear Collisions 8-14 June 2008, Illa da Toxa (Galicia-Spain

    Further Studies of Unusual Fission Mass Distributions using 190 MeV Protons

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHy 87-1440

    SCIENCECRAFT

    Get PDF
    The technological capabilities are now at hand to design an integrated system that combine science instruments, spacecraft and propulsion elements into a single system. The authors have called this a Sciencecraft since it is intended to provide automatic scientific observations of planetary and astrophysical objects. Integration of function allows lower mass and cost and supports a short development cycle. A specific science mission is described in this paper, a flyby of Neptune, Triton and an object in the Kuiper belt. The SCIENCECRAFT system is described. It has electric propulsion and is capable of measuring the surface constituents and morphology of the objects visited and characterizing their atmospheres both in emission and absorption (against the sun). Miniature fields and particles experiments are incorporated that will provide interplanetary information together with details of the magnetic and electric attributes of each object. The SCIENCECRAFT is Delta launched and has a flight time to the Kuiper belt of 7 years. The design is such that the craft functions in a largely autonomous mode to provide low cost mission operations
    • …
    corecore