5,139 research outputs found

    Survey- and fishery-derived estimates of Pacific cod (Gadus macrocephalus) biomass: implications for strategies to reduce interactions between groundfish fisheries and Steller sea lions (Eumetopias jubatus)

    Get PDF
    Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spe

    Heat transport in turbulent Rayleigh-Benard convection: Effect of finite top- and bottom-plate conductivity

    Full text link
    We describe three apparatus, known as the large, medium, and small apparatus, used for high-precision measurements of the Nusselt number N as a function of the Rayleigh number R for cylindrical samples of fluid and present results illustrating the influence of the finite conductivity of the top and bottom plates on the heat transport in the fluid. We used water samples at a mean temperature of 40 degrees C (Prandtl number sigma = 4.4). The samples in the large apparatus had a diameter D of 49.69 cm and heights L = 116.33, 74.42, 50.61, and 16.52 cm. For the medium apparatus we had D = 24.81 cm, and L = 90.20 and 24.76 cm. The small apparatus contained a sample with D = 9.21 cm, and L = 9.52 cm. For each aspect ratio Gamma = D/L the data covered a range of a little over a decade of R. The maximum R = 10^12 with Nusselt numbers N = 600 was reached for Gamma = 0.43. Measurements were made with both Aluminum and Copper top and bottom plates of nominally identical size and shape. For the large and medium apparatus the results with Aluminum plates fall below those obtained with Copper plates, thus confirming qualitatively the prediction by Verzicco that plates of finite conductivity diminish the heat transport in the fluid. The Nusselt number N_infinity for plates with infinite conductivity was estimated by fitting simultaneously Aluminum- and Copper-plate data sets to an effective powerlaw for N_infinity multiplied by a correction factor f(X) = 1 - exp[-(aX)^b] that depends on the ratio X of the thermal resistance of the fluid to that of the plates as suggested by Verzicco. Within their uncertainties the parameters a and b were independent of Gamma for the large apparatus and showed a small Gamma-dependence for the medium apparatus. The correction was larger for the large, smaller for the medium, and negligible for the small apparatus.Comment: 35 pages, 11 figures. Under consideration for publication in Phys. of Fluid

    Life’s Lessons in the Lab: A Summer of Learning from Undergraduate Research Experiences

    Get PDF
    Research experiences for undergraduates (REUs) seek to increase the participating students’ knowledge and perceptions of scientific research through engagement in laboratory research and related activities. Various REU outcomes have been investigated, including influence on participants’ content knowledge, career plans, and general perceptions of their domains of research. The complexity of REUs and dynamic nature of student development provide opportunity for exploring how REUs influence student growth. Our research focused on first and second-year college students who participated in a residential REU program that took place in a chemistry department in a metropolitan university in the western United States. We assessed the standard REU outcomes and sought to document the emotions the students experienced through their participation. In addition, we used the developmental framework of self-authorship (Baxter-Magolda, 2004) as a lens to investigate the participants’ professional identity development. Our mixed methods research revealed shifts in the participants’ perceptions of science, increases in their knowledge of chemistry, and clarity in their career trajectories. We also found that the REU participants experienced profound levels of professional identity growth and used a number of affective terms, such as confidence, persistence, patience, and enjoyment, to describe their experience. Interpretations and implications are discussed

    Looking Under the Hood : Tools for Diagnosing your Question Answering Engine

    Full text link
    In this paper we analyze two question answering tasks : the TREC-8 question answering task and a set of reading comprehension exams. First, we show that Q/A systems perform better when there are multiple answer opportunities per question. Next, we analyze common approaches to two subproblems: term overlap for answer sentence identification, and answer typing for short answer extraction. We present general tools for analyzing the strengths and limitations of techniques for these subproblems. Our results quantify the limitations of both term overlap and answer typing to distinguish between competing answer candidates.Comment: Revision of paper appearing in the Proceedings of the Workshop on Open-Domain Question Answerin

    Genetic relatedness in carbapenem-resistant isolates from clinical specimens in Ghana using ERIC-PCR technique.

    Get PDF
    AIM: Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis is a powerful tool for epidemiological analysis of bacterial species. This study aimed to determine the genetic relatedness or variability in carbapenem-resistant isolates by species using this technique. METHODS: A total of 111 non-duplicated carbapenem-resistant (CR) Gram-negative bacilli isolates from a three-year collection period (2012-2014) were investigated by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) in four selected hospital laboratories in Ghana. The isolates were also screened for carbapenemase and extended spectrum β-lactamase genes by PCR. RESULTS: A proportion of 23.4% (26/111) of the genomic DNA extracts were carriers of PCR-positive carbapenemase genes, including 14.4% blaNDM-1, 7.2% blaVIM-1 and 1.8% blaOXA-48. The highest prevalence of carbapenemase genes was from non-fermenters, Acinetobacter baumannii and Pseudomonas aeruginosa. For the ESBL genes tested, 96.4% (107/111) of the CR isolates co-harboured both TEM-1 and SHV-1 genes. The ERIC-PCR gel analysis exhibited 1 to 8 bands ranging from 50 to 800 bp. Band patterns of 93 complex dissimilarities were visually distinguished from the 111 CR isolates studied, while the remaining 18 showed band similarities in pairs. CONCLUSION: Overall, ERIC-PCR fingerprints have shown a high level of diversity among the species of Gram-negative bacterial pathogens and specimen collection sites in this study. ERIC-PCR optimisation assays may serve as a suitable genotyping tool for the assessment of genetic diversity or close relatedness of isolates that are found in clinical settings

    Spectropolarimetry and Modeling of the Eclipsing T Tauri Star KH 15D

    Full text link
    KH 15D is a strongly variable T Tauri star in the young star cluster NGC 2264 that shows a decrease in flux of 3.5 magnitudes lasting for 18 days and repeating every 48 days. The eclipsing material is likely due to orbiting dust or rocky bodies in a partial ring or warped disk that periodically occults the star. We measured the polarized spectrum in and out of eclipse at the Keck and Palomar observatories. Outside of the eclipse, the star exhibited low polarization consistent with zero. During eclipse, the polarization increased dramatically to ~2% across the optical spectrum, while the spectrum had the same continuum shape as outside of eclipse and exhibited emission lines of much larger equivalent width, as previously seen. From the data, we conclude that (a) the scattering region is uneclipsed; (b) the scattering is nearly achromatic; (c) the star is likely completely eclipsed so that the flux during eclipse is entirely due to scattered light, a conclusion also argued for by the shape of the ingress and egress. We argue that the scattering is not due to electrons, but may be due to large dust grains of size ~10 micron, similar to the interplanetary grains which scatter the zodiacal light. We construct a warped-disk model with an extended dusty atmosphere which reproduces the main features of the lightcurve, namely (a) a gradual decrease before ingress due to extinction in the atmosphere (similar for egress); (b) a sharper decrease within ingress due to the optically-thick base of the atmosphere; (c) a polarized flux during eclipse which is 0.1% of the total flux outside of eclipse, which requires no fine-tuning of the model. (abridged)Comment: 9 pages, 7 figures, accepted for publication in ApJ, MPEG simulation available at http://www.astro.washington.edu/agol/scatter2.mp

    Optical Polarization and Spectral Variability in the M87 Jet

    Get PDF
    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from 20\sim 20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (αUVO0.5\alpha_{UV-O}\sim0.5, FνναF_\nu\propto\nu^{-\alpha}), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ\sigma upper limits of 0.5δ0.5 \delta parsecs and 1.02cc on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I,P)(I,P) plane. The nucleus has a much steeper spectrum (αUVO1.5\alpha_{UV-O} \sim 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.Comment: 14 pages, 7 figures, ApJ, in pres

    Raskaat harvinaiset maa-alkuaineet ja laakiobasalttien lähteet

    Get PDF
    Editor's ChoiceHeavy rare earth elements (HREEs) in mafic and ultramafic volcanic rocks are useful recorders of mantle source processes because their ratios are not easily modified by differentiation. Here we utilize REEBOX PRO, a simulator of adiabatic decompression melting of the mantle, to study the behavior of HREEs in the formation of continental flood basalt (CFB) parental magmas in the mantle. We simulate partial melting of depleted peridotite, pyrolitic peridotite, pyroxenite, and peridotite-pyroxenite mixtures at mantle potential temperatures of 1350-1650 degrees C and lithospheric thicknesses of 50-150 km, and compare the results to natural data. Many large igneous provinces are typified by low-Ti and high-Ti CFBs with contrasting HREE patterns. Our results show that low-Ti CFBs originate mainly from peridotitic sources. Flat mid-ocean ridge basalt-like HREE patterns typical of low-Ti CFBs can be generated beneath thick lithosphere (similar to 100 km), given that mantle potential temperatures are high (>1500 degrees C) and garnet is completely consumed from the source. We thus challenge the common interpretation that flat HREE patterns always indicate shallow sources for CFB parental magmas. High-Ti CFBs require pyroxenite-bearing sources (>= 10%). Contrary to a common view, their steep oceanic island basalt-like HREE patterns can be generated beneath quite a thin lithosphere (similar to 50 km), which is due to increased garnet stability in pyroxenite sources. When applied to CFBs of the Karoo large igneous province, the results are compatible with a model where a mantle plume penetrates a progressively thinning Gondwana lithosphere.Peer reviewe
    corecore