3,369 research outputs found

    Pseudacteon

    Get PDF
    Three new species of the genus Pseudacteon are described, all from Chiapas, Mexico, and all of which are parasitoids of the ant Azteca instabilis. Sternite 6 of Pseudacteon dorymyrmecis Borgmeier is illustrated for the first time, and P. confusus Disney is synonymized with this species. The natural history of the Azteca-Pseudacteon interaction is described

    Microbial ecology of Thiobacillus ferrooxidans

    Get PDF
    FINAL TECHNICAL REPORT TO U.S. DEPARTMENT OF THE INTERIOR Geological Survey Washington. D.C.The contents of this report were developed in part under a grant from the Department of the Interior, U.S. Geological Survey. Grant number 14-08-0001-61313

    Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes

    Get PDF
    BACKGROUND We sought to compare uterine cervical electrical impedance spectroscopy measurements employing two probes of different sizes, and to employ a finite element model to predict and compare the fraction of electrical current derived from subepithelial stromal tissue. METHODS Cervical impedance was measured in 12 subjects during early pregnancy using 2 different sizes of the probes on each subject. RESULTS Mean cervical resistivity was significantly higher (5.4 vs. 2.8 Ωm; p < 0.001) with the smaller probe in the frequency rage of 4–819 kHz. There was no difference in the short-term intra-observer variability between the two probes. The cervical impedance measurements derived in vivo followed the pattern predicted by the finite element model. CONCLUSION Inter-electrode distance on the probes for measuring cervical impedance influences the tissue resistivity values obtained. Determining the appropriate probe size is necessary when conducting clinical studies of resistivity of the cervix and other human tissues

    Multispectrum Analysis of the Oxygen A-band

    Get PDF
    Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure 02 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database

    Flat H Frangible Joint Evolution

    Get PDF
    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same three-dimensional envelope as current designs as well as meet structural loads requirements. There is increased mass associated with the redundant design, and the goal is to minimize the weight impact as much as possible. These requirements presented significant challenges, both technically and financially; these challenges will be explored in this paper. Perhaps greater than the technical issues confronted during this design process, were the financial considerations. These were a significant part of the story of this design and development plan. Insufficient financial and labor resources were formidable barriers to completing this project. Nevertheless, JSC personnel successfully conducted several test series at JSC with very useful results. The many lessons learned drove design improvements, performance efficiency, and increased functional reliability. This paper examines the significant technical and financial challenges that these requirements posed to the project team. It discusses the evolution of the SFT frangible joint design, including optimization, testing, and successful partnering of the Johnson Space Center (JSC) engineering and JSC safety organizations, to enhance the flight safety margin for America's next generation of human-rated space vehicles

    Unidentified EGRET Sources and the Extragalactic Gamma-Ray Background

    Get PDF
    The large majority of EGRET point sources remain to this day without an identified low-energy counterpart. Whatever the nature of the EGRET unidentified sources, faint unresolved objects of the same class must have a contribution to the diffuse gamma-ray background: if most unidentified objects are extragalactic, faint unresolved sources of the same class contribute to the background, as a distinct extragalactic population; on the other hand, if most unidentified sources are Galactic, their counterparts in external galaxies will contribute to the unresolved emission from these systems. Understanding this component of the gamma-ray background, along with other guaranteed contributions from known sources, is essential in any attempt to use gamma-ray observations to constrain exotic high-energy physics. Here, we follow an empirical approach to estimate whether a potential contribution of unidentified sources to the extragalactic gamma-ray background is likely to be important, and we find that it is. Additionally, we comment on how the anticipated GLAST measurement of the diffuse gamma-ray background will change, depending on the nature of the majority of these sources.Comment: 6 pages, 3 figures, to appear in proceedings of "The Multi-Messenger Approach to High Energy Gamma-Ray Sources", Barcelona, 4-7 July 2006; comments welcom

    Bradykinin Type 2 Receptor BE1 Genotype Influences Bradykinin-dependent Vasodilation During Angiotensin-converting Enzyme Inhibition

    Get PDF
    To test the hypothesis that the bradykinin receptor 2 (BDKRB2) BE1+9/-9 polymorphism affects vascular responses to bradykinin, we measured the effect of intra-arterial bradykinin on forearm blood flow and tissue-type plasminogen activator (t-PA) release in 89 normotensive, nonsmoking, white American subjects in whom degradation of bradykinin was blocked by enalaprilat. BE1 genotype frequencies were +9/+9:+9/-9:-9/-9=19:42:28. BE1 genotype was associated with systolic blood pressure (121.4+/-2.8, 113.8+/-1.8, and 110.6+/-1.8 mm Hg in +9/+9, +9/-9, and -9/-9 groups, respectively; P=0.007). In the absence of enalaprilat, bradykinin-stimulated forearm blood flow, forearm vascular resistance, and net t-PA release were similar among genotype groups. Enalaprilat increased basal forearm blood flow (P=0.002) and decreased basal forearm vascular resistance (P=0.01) without affecting blood pressure. Enalaprilat enhanced the effect of bradykinin on forearm blood flow, forearm vascular resistance, and t-PA release (all P\u3c0.001). During enalaprilat, forearm blood flow was significantly lower and forearm vascular resistance was higher in response to bradykinin in the +9/+9 compared with +9/-9 and -9/-9 genotype groups (P=0.04 for both). t-PA release tended to be decreased in response to bradykinin in the +9/+9 group (P=0.08). When analyzed separately by gender, BE1 genotype was associated with bradykinin-stimulated t-PA release in angiotensin-converting enzyme inhibitor-treated men but not women (P=0.02 and P=0.77, respectively), after controlling for body mass index. There was no effect of BE1 genotype on responses to the bradykinin type 2 receptor-independent vasodilator methacholine during enalaprilat. In conclusion, the BDKRB2 BE1 polymorphism influences bradykinin type 2 receptor-mediated vasodilation during angiotensin-converting enzyme inhibition

    The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution

    Get PDF
    We present a series of spectra of SN 1994I in M51, starting 1 week prior to maximum brightness. The nebular phase began about 2 months after the explosion; together with the rapid decline of the optical light, this suggests that the ejected mass was small. Although lines of He I in the optical region are weak or absent, consistent with the Type Ic classification, we detect strong He I λ10830 absorption during the first month past maximum. Thus, if SN 1994I is a typical Type Ic supernova, the atmospheres of these objects cannot be completely devoid of helium. The emission-line widths are smaller than predicted by the model of Nomoto and coworkers, in which the iron core of a low-mass carbon-oxygen star collapses. They are, however, larger than in Type Ib supernovae
    • …
    corecore