105 research outputs found

    Identifying patients who may benefit from adaptive radiotherapy:Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help?

    Get PDF
    AbstractIn the last decade, many efforts have been made to characterize anatomic changes of head and neck organs at risk (OARs) and the dosimetric consequences during radiotherapy. This review was undertaken to provide an overview of the magnitude and frequency of these effects, and to investigate whether we could find criteria to identify head and neck cancer patients who may benefit from adaptive radiotherapy (ART). Possible relationships between anatomic and dosimetric changes and outcome were explicitly considered. A literature search according to PRISMA guidelines was performed in MEDLINE and EMBASE for studies concerning anatomic or dosimetric changes of head and neck OARs during radiotherapy. Fifty-one eligible studies were found. The majority of papers reported on parotid gland (PG) anatomic and dosimetric changes. In some patients, PG mean dose differences between planning CT and repeat CT scans up to 10Gy were reported. In other studies, only minor dosimetric effects (i.e. <1Gy difference in PG mean dose) were observed as a result of significant anatomic changes. Only a few studies reported on the clinical relevance of anatomic and dosimetric changes in terms of complications or quality of life. Numerous potential selection criteria for anatomic and dosimetric changes during radiotherapy were found and listed. The heterogeneity between studies prevented unambiguous conclusions on how to identify patients who may benefit from ART in head and neck cancer. Potential pre-treatment selection criteria identified from this review include tumour location (nasopharyngeal carcinoma), age, body mass index, planned dose to the parotid glands, the initial parotid gland volume, and the overlap volume of the parotid glands with the target volume. These criteria should be further explored in well-designed and well-powered prospective studies, in which possible relationships between anatomic and dosimetric changes and outcome need to be established

    The effects of computed tomography image characteristics and knot spacing on the spatial accuracy of B-spline deformable image registration in the head and neck geometry

    Get PDF
    Objectives: To explore the effects of computed tomography (CT) image characteristics and B-spline knot spacing (BKS) on the spatial accuracy of a B-spline deformable image registration (DIR) in the head-and-neck geometry. Methods: The effect of image feature content, image contrast, noise, and BKS on the spatial accuracy of a B-spline DIR was studied. Phantom images were created with varying feature content and varying contrast-to-noise ratio (CNR), and deformed using a known smooth B-spline deformation. Subsequently, the deformed images were repeatedly registered with the original images using different BKSs. The quality of the DIR was expressed as the mean residual displacement (MRD) between the known imposed deformation and the result of the B-spline DIR. Finally, for three patients, head-and-neck planning CT scans were deformed with a realistic deformation field derived from a rescan CT of the same patient, resulting in a simulated deformed image and an a-priori known deformation field. Hence, a B-spline DIR was performed between the simulated image and the planning CT at different BKSs. Similar to the phantom cases, the DIR accuracy was evaluated by means of MRD. Results: In total, 162 phantom registrations were performed with varying CNR and BKSs. MRD-values = +/- 250 HU and noise <+/- 200 HU. Decreasing the image feature content resulted in increased MRD-values at all BKSs. Using BKS = 15 mm for the three clinical cases resulted in an average MRD <1.0 mm. Conclusions: For synthetically generated phantoms and three real CT cases the highest DIR accuracy was obtained for a BKS between 10-20 mm. The accuracy decreased with decreasing image feature content, decreasing image contrast, and higher noise levels. Our results indicate that DIR accuracy in clinical CT images (typical noise levels <+/- 100 HU) will not be effected by the amount of image noise

    An investigation into the risk of population bias in deep learning autocontouring

    Get PDF
    Background and Purpose: To date, data used in the development of Deep Learning-based automatic contouring (DLC) algorithms have been largely sourced from single geographic populations. This study aimed to evaluate the risk of population-based bias by determining whether the performance of an autocontouring system is impacted by geographic population.Materials and methods: 80 Head Neck CT deidentified scans were collected from four clinics in Europe (n = 2) and Asia (n = 2). A single observer manually delineated 16 organs-at-risk in each. Subsequently, the data was contoured using a DLC solution, and trained using single institution (European) data. Autocontours were compared to manual delineations using quantitative measures. A Kruskal-Wallis test was used to test for any difference between populations. Clinical acceptability of automatic and manual contours to observers from each participating institution was assessed using a blinded subjective evaluation.Results: Seven organs showed a significant difference in volume between groups. Four organs showed statistical differences in quantitative similarity measures. The qualitative test showed greater variation in acceptance of contouring between observers than between data from different origins, with greater acceptance by the South Korean observers.Conclusion: Much of the statistical difference in quantitative performance could be explained by the difference in organ volume impacting the contour similarity measures and the small sample size. However, the qualitative assessment suggests that observer perception bias has a greater impact on the apparent clinical acceptability than quantitatively observed differences. This investigation of potential geographic bias should extend to more patients, populations, and anatomical regions in the future.</p

    A novel semi auto-segmentation method for accurate dose and NTCP evaluation in adaptive head and neck radiotherapy

    Get PDF
    Background and purpose: Accurate segmentation of organs-at-risk (OARs) is crucial but tedious and time-consuming in adaptive radiotherapy (ART). The purpose of this work was to automate head and neck OAR-segmentation on repeat CT (rCT) by an optimal combination of human and auto-segmentation for accurate prediction of Normal Tissue Complication Probability (NTCP). Materials and methods: Human segmentation (HS) of 3 observers, deformable image registration (DIR) based contour propagation and deep learning contouring (DLC) were carried out to segment 15 OARs on 15 rCTs. The original treatment plan was re-calculated on rCT to obtain mean dose (D-mean) and con-sequent NTCP-predictions. The average Dmean and NTCP-predictions of the three observers were referred to as the gold standard to calculate the absolute difference of D-mean and NTCP-predictions (vertical bar AD(mean)vertical bar and vertical bar ANTCP vertical bar). Results: The average vertical bar AD(mean)vertical bar of parotid glands in HS was 1.40 Gy, lower than that obtained with DIR and DLC (3.64 Gy, p < 0.001 and 3.72 Gy, p < 0.001, respectively). DLC showed the highest vertical bar AD(mean)vertical bar in middle Pharyngeal Constrictor Muscle (PCM) (5.13 Gy, p = 0.01). DIR showed second highest vertical bar AD(mean)vertical bar in the cricopharyngeal inlet (2.85 Gy, p = 0.01). The semi auto-segmentation (SAS) adopted HS, DIR and DLC for segmentation of parotid glands, PCM and all other OARs, respectively. The 90th percentile vertical bar ANTCP vertical bar was 2.19%, 2.24%, 1.10% and 1.50% for DIR, DLC, HS and SAS respectively. Conclusions: Human segmentation of the parotid glands remains necessary for accurate interpretation of mean dose and NTCP during ART. Proposed semi auto-segmentation allows NTCP-predictions within 1.5% accuracy for 90% of the cases. (C) 2021 The Author(s). Published by Elsevier B.V

    An efficient strategy to select head and neck cancer patients for adaptive radiotherapy

    Get PDF
    BACKGROUND AND PURPOSE: Adaptive radiotherapy (ART) is workload intensive but only benefits a subgroup of patients. We aimed to develop an efficient strategy to select candidates for ART in the first two weeks of head and neck cancer (HNC) radiotherapy.MATERIALS AND METHODS: This study retrospectively enrolled 110 HNC patients who underwent modern photon radiotherapy with at least 5 weekly in-treatment re-scan CTs. A semi auto-segmentation method was applied to obtain the weekly mean dose (D mean) to OARs. A comprehensive NTCP-profile was applied to obtain NTCP's. The difference between planning and actual values of D mean (ΔD mean) and dichotomized difference of clinical relevance (BIOΔNTCP) were used for modelling to determine the cut-off maximum ΔD mean of OARs in week 1 and 2 (maxΔD mean_1 and maxΔD mean_2). Four strategies to select candidates for ART, using cut-off maxΔD mean were compared. RESULTS: The Spearman's rank correlation test showed significant positive correlation between maxΔD mean and BIOΔNTCP (p-value &lt;0.001). For major BIOΔNTCP (&gt;5%) of acute and late toxicity, 10.9% and 4.5% of the patients were true candidates for ART. Strategy C using both cut-off maxΔD mean_1 (3.01 and 5.14 Gy) and cut-off maxΔD mean_2 (3.41 and 5.30 Gy) showed the best sensitivity, specificity, positive and negative predictive values (0.92, 0.82, 0.38, 0.99 for acute toxicity and 1.00, 0.92, 0.38, 1.00 for late toxicity, respectively). CONCLUSIONS: We propose an efficient selection strategy for ART that is able to classify the subgroup of patients with &gt;5% BIOΔNTCP for late toxicity using imaging in the first two treatment weeks.</p

    (18)F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia

    Get PDF
    BACKGROUND AND PURPOSE: Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from (18)F-FDG PET images, quantified in PET image biomarkers (PET-IBMs). PATIENTS AND METHODS: Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment (18)F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models. RESULTS: High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E). CONCLUSION: Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development

    Cervical high-intensity intramedullary lesions in achondroplasia:Aetiology, prevalence and clinical relevance

    Get PDF
    In achondroplastic patients with slight complaints of medullary compression the cervical spinal cord regularly exhibits an intramedullary (CHII) lesion just below the craniocervical junction with no signs of focal compression on the cord. Currently, the prevalence of the lesion in the general achondroplastic population is studied and its origin is explored. Eighteen achondroplastic volunteers with merely no clinical signs of medullary compression were subjected to dynamic magnetic resonance imaging (MRI). The presence of a CHII lesion and craniocervical medullary compression in flexed and retroflexed craniocervical positions was explored. Several morphological characteristics of the craniocervical junction, possibly related to compression on the cord, were assessed. A CHII lesion was observed in 39% of the subjects and in only one of these was compression at the craniocervical junction present. Consequently, no correlation between the CHII lesion and compression could be established. None of the morphological characteristics demonstrated a correlation with the CHII lesion, except thinning of the cord at the site of the CHII lesion. CHII lesions are a frequent finding in achondroplasia, and are generally unaccompanied by clinical symptoms or compression on the cord. Further research focusing on the origin of CHII lesions and their clinical implications is warranted. aEuro cent MRI now reveals exquisite detail of the cervical spinal cord. aEuro cent Cervical cord lesions are observed in one third of the achondroplastic population. aEuro cent These lesions yield high signal intensity on T2 weighted MRI. aEuro cent They are generally unaccompanied by clinical symptoms or cord compression. aEuro cent Their aetiology is unclear and seems to be unrelated to mechanical causes

    Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring

    Get PDF
    INTRODUCTION: Adequate head and neck (HN) organ-at-risk (OAR) delineation is crucial for HN radiotherapy and for investigating the relationships between radiation dose to OARs and radiation-induced side effects. The automatic contouring algorithms that are currently in clinical use, such as atlas-based contouring (ABAS), leave room for improvement. The aim of this study was to use a comprehensive evaluation methodology to investigate the performance of HN OAR auto-contouring when using deep learning contouring (DLC), compared to ABAS. METHODS: The DLC neural network was trained on 589 HN cancer patients. DLC was compared to ABAS by providing each method with an independent validation cohort of 104 patients, which had also been manually contoured. For each of the 22 OAR contours - glandular, upper digestive tract and central nervous system (CNS)-related structures - the dice similarity coefficient (DICE), and absolute mean and max dose differences (|Δmean-dose| and |Δmax-dose|) performance measures were obtained. For a subset of 7 OARs, an evaluation of contouring time, inter-observer variation and subjective judgement was performed. RESULTS: DLC resulted in equal or significantly improved quantitative performance measures in 19 out of 22 OARs, compared to the ABAS (DICE/|Δmean dose|/|Δmax dose|: 0.59/4.2/4.1 Gy (ABAS); 0.74/1.1/0.8 Gy (DLC)). The improvements were mainly for the glandular and upper digestive tract OARs. DLC significantly reduced the delineation time for the inexperienced observer. The subjective evaluation showed that DLC contours were more often preferable to the ABAS contours overall, were considered to be more precise, and more often confused with manual contours. Manual contours still outperformed both DLC and ABAS; however, DLC results were within or bordering the inter-observer variability for the manual edited contours in this cohort. CONCLUSION: The DLC, trained on a large HN cancer patient cohort, outperformed the ABAS for the majority of HN OARs

    Differences in delineation guidelines for head and neck cancer result in inconsistent reported dose and corresponding NTCP

    Get PDF
    AbstractPurposeTo test the hypothesis that delineation of swallowing organs at risk (SWOARs) based on different guidelines results in differences in dose–volume parameters and subsequent normal tissue complication probability (NTCP) values for dysphagia-related endpoints.Materials and methodsNine different SWOARs were delineated according to five different delineation guidelines in 29 patients. Reference delineation was performed according to the guidelines and NTCP-models of Christianen et al. Concordance Index (CI), dosimetric consequences, as well as differences in the subsequent NTCPs were calculated.ResultsThe median CI of the different delineation guidelines with the reference guidelines was 0.54 for the pharyngeal constrictor muscles, 0.56 for the laryngeal structures and 0.07 for the cricopharyngeal muscle and esophageal inlet muscle. The average difference in mean dose to the SWOARs between the guidelines with the largest difference (maxΔD) was 3.5±3.2Gy. A mean ΔNTCP of 2.3±2.7% was found. For two patients, ΔNTCP exceeded 10%.ConclusionsThe majority of the patients showed little differences in NTCPs between the different delineation guidelines. However, large NTCP differences >10% were found in 7% of the patients. For correct use of NTCP models in individual patients, uniform delineation guidelines are of great importance

    CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva

    Get PDF
    AbstractBackground and purposeCurrent models for the prediction of late patient-rated moderate-to-severe xerostomia (XER12m) and sticky saliva (STIC12m) after radiotherapy are based on dose-volume parameters and baseline xerostomia (XERbase) or sticky saliva (STICbase) scores. The purpose is to improve prediction of XER12m and STIC12m with patient-specific characteristics, based on CT image biomarkers (IBMs).MethodsPlanning CT-scans and patient-rated outcome measures were prospectively collected for 249 head and neck cancer patients treated with definitive radiotherapy with or without systemic treatment. The potential IBMs represent geometric, CT intensity and textural characteristics of the parotid and submandibular glands. Lasso regularisation was used to create multivariable logistic regression models, which were internally validated by bootstrapping.ResultsThe prediction of XER12m could be improved significantly by adding the IBM “Short Run Emphasis” (SRE), which quantifies heterogeneity of parotid tissue, to a model with mean contra-lateral parotid gland dose and XERbase. For STIC12m, the IBM maximum CT intensity of the submandibular gland was selected in addition to STICbase and mean dose to submandibular glands.ConclusionPrediction of XER12m and STIC12m was improved by including IBMs representing heterogeneity and density of the salivary glands, respectively. These IBMs could guide additional research to the patient-specific response of healthy tissue to radiation dose
    corecore