
 

 

 University of Groningen

Improving automatic delineation for head and neck organs at risk by Deep Learning
Contouring
van Dijk, Lisanne V; Van den Bosch, Lisa; Aljabar, Paul; Peressutti, Devis; Both, Stefan; J H
M Steenbakkers, Roel; Langendijk, Johannes A; Gooding, Mark J; Brouwer, Charlotte L
Published in:
Radiotherapy and Oncology

DOI:
10.1016/j.radonc.2019.09.022

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Dijk, L. V., Van den Bosch, L., Aljabar, P., Peressutti, D., Both, S., J H M Steenbakkers, R., ...
Brouwer, C. L. (2020). Improving automatic delineation for head and neck organs at risk by Deep Learning
Contouring. Radiotherapy and Oncology, 142, 115-123. https://doi.org/10.1016/j.radonc.2019.09.022

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-05-2020

https://doi.org/10.1016/j.radonc.2019.09.022
https://www.rug.nl/research/portal/en/publications/improving-automatic-delineation-for-head-and-neck-organs-at-risk-by-deep-learning-contouring(c1929e97-d00b-47f8-83b2-22920c61a3e3).html
https://doi.org/10.1016/j.radonc.2019.09.022


Radiotherapy and Oncology 142 (2020) 115–123
Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal .com
Original Article
Improving automatic delineation for head and neck organs at risk by
Deep Learning Contouring
https://doi.org/10.1016/j.radonc.2019.09.022
0167-8140/� 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Department of Radiation Oncology, University
Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.

E-mail address: l.v.van.dijk@umcg.nl (L.V. van Dijk).
Lisanne V. van Dijk a,⇑, Lisa Van den Bosch a, Paul Aljabar b, Devis Peressutti b, Stefan Both a,
Roel. J.H.M. Steenbakkers a, Johannes A. Langendijk a, Mark J. Gooding b, Charlotte L. Brouwer a

aDepartment of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands; bMirada Medical Ltd, Oxford Centre for Innovation, UK

a r t i c l e i n f o
Article history:
Received 22 March 2019
Received in revised form 9 September 2019
Accepted 24 September 2019
Available online 22 October 2019

Keywords:
Head and neck
Organs at risks
Deep learning
Artificial intelligent
Auto segmentation
Contouring
a b s t r a c t

Introduction: Adequate head and neck (HN) organ-at-risk (OAR) delineation is crucial for HN radiother-
apy and for investigating the relationships between radiation dose to OARs and radiation-induced side
effects. The automatic contouring algorithms that are currently in clinical use, such as atlas-based con-
touring (ABAS), leave room for improvement. The aim of this study was to use a comprehensive evalua-
tion methodology to investigate the performance of HN OAR auto-contouring when using deep learning
contouring (DLC), compared to ABAS.
Methods: The DLC neural network was trained on 589 HN cancer patients. DLC was compared to ABAS by
providing each method with an independent validation cohort of 104 patients, which had also been man-
ually contoured. For each of the 22 OAR contours – glandular, upper digestive tract and central nervous
system (CNS)-related structures – the dice similarity coefficient (DICE), and absolute mean and max dose
differences (|Dmean-dose| and |Dmax-dose|) performance measures were obtained. For a subset of 7
OARs, an evaluation of contouring time, inter-observer variation and subjective judgement was per-
formed.
Results: DLC resulted in equal or significantly improved quantitative performance measures in 19 out of
22 OARs, compared to the ABAS (DICE/|Dmean dose|/|Dmax dose|: 0.59/4.2/4.1 Gy (ABAS);
0.74/1.1/0.8 Gy (DLC)). The improvements were mainly for the glandular and upper digestive tract
OARs. DLC significantly reduced the delineation time for the inexperienced observer. The subjective eval-
uation showed that DLC contours were more often preferable to the ABAS contours overall, were consid-
ered to be more precise, and more often confused with manual contours. Manual contours still
outperformed both DLC and ABAS; however, DLC results were within or bordering the inter-observer
variability for the manual edited contours in this cohort.
Conclusion: The DLC, trained on a large HN cancer patient cohort, outperformed the ABAS for the majority
of HN OARs.
� 2019 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 142 (2020) 115–123 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Research on side effects of radiotherapy has been a steadily
growing field of interest, as advances in treatment (e.g. multi-
modality imaging, proton therapy, targeted agents) have led to
both increased life expectancy in cancer survivors and a greater
degree of control in sparing organs-at-risk (OARs) [1]. Adequate
delineation of OARs is crucial when investigating the association
between radiation dose and side effects and when optimizing
treatment planning. However, manual contouring of OARs is very
time-consuming [2] and is prone to inter-observer variability
[3,4]. This task requires significant expertise, especially for head
and neck (HN) cancer patients, due to the complex anatomy.
Meanwhile, the manual contouring burden on the clinic is rising
as a consequence of the increasing number of OARs found to be
associated with radiation-induced side effects [5–8].

Auto-contouring of OARs aims to reduce delineation time and
effort, and to improve inter-observer consistency [9–11]. Atlas-
based auto-contouring (ABAS) is a widely used method in which
a set of representative patients with carefully delineated OARs
serve as a reference set (i.e. atlas) for contouring new patients
[12,13]. OAR contours of the atlas patient(s) are registered to
new patients in order to transform (usually with a deformation)
and combine their OAR contours in the new scan. Although ABAS
has already reduced workload and improved consistency in many
radiotherapy departments, there are a number of issues that leave
room for improvement. First, ABAS generally underperforms for
small and/or thin OARs, such as the swallowing muscles [14].
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Secondly, only a limited range of anatomical variation can be rep-
resented by typical sets of atlas patients (N = 10–30) as contouring
performance generally plateaus with the inclusion of around 10–
20 atlases [15,16], leading to poor delineation of structures in
patients with anatomies differing from those in the transformed
atlases [9]. Third, ABAS is also limited by the accuracy of the defor-
mation between anatomies that, especially for CT, can be limited in
areas with uniform intensity, such as soft tissues [17,18]. Finally,
even for large databases, selecting the most appropriate atlases
may be unreliable, potentially leading to sub-optimal performance
[19].

Generating contours directly using deep learning techniques –
derived from artificial intelligence research – has emerged as a
promising method of addressing these challenges. Deep learning
contouring (DLC) typically trains a convolutional neural network
(CNN) model directly from the data without users needing to iden-
tify image features.

Improved computing power and training of neural networks
have made deep learning methods more readily available for con-
touring purposes [20]. Several studies have already shown the
potential of CNNs for HN contouring [21,22] and for other sites
[23–25].

In this study, DLC was trained on a set of 589 HN cancer patients
with complete sets of contours for 22 OARs (including glandular,
upper digestive tract, central nervous system, bone and vessel
related structures). OARs were carefully delineated according to
the international OAR consensus guidelines [26]. The performance
of DLC was comprehensively evaluated and compared to ABAS in
an independent validation cohort of 104 HN cancer patients, using
quantitative geometric and dosimetric measures, along with con-
touring time, inter-observer variation and subjective evaluations.
Patient characteristics.

Characteristics Train set CV set Test set p-Value

N = 549 % N = 40 % N = 104 %

Sex 0.361
Female 139 25 13 33 21 20
Methods

A schematic of the comparisons made in this study is shown in
Fig. 1.
Fig. 1. Overview of evaluation methods.
Patients

A total of 693 HN cancer patients were included in this study
(Table 1). All patients were treated with primary curative radio-
therapy, with or without systemic treatment, between March
2007 and July 2016 at the University Medical Center Groningen
(UMCG). The treatment modalities used were: 3D-CRT (12%),
Simultaneous integrated boost (SIB) 7 Field IMRT (72%), or 2-ARC
VMAT (16%). For most patients 70 Gy was prescribed to the pri-
mary tumour in 35 fractions. For each patient, a planning CT scan
(Somatom Sensation Open, Somatom Definition AS or Biograph64,
Siemens, Forchheim, Germany) was acquired approximately
2 weeks before treatment, with an average voxel size
0.98 � 0.98 � 2 mm (range: ‘0.62 � 0.62–1.37 � 1.37’ � ‘2–
4’ mm); B30f or I40s\3; 80, 100–120 kV. An iterative metal artifact
reduction reconstruction was used from 2015 on to limit the sever-
ity of artifacts in the scan on an minority of patients (~18%) and the
majority of CT scans were contrast-enhanced (>90%). The clinical
treatment plans were used when performing dose estimation.
Patients were excluded if they had a salivary gland tumour,
received prior HN surgery or radiotherapy. These exclusion criteria
is related to an unpublished study cohort that is used for prediction
of a comprehensive profile of side-effects of head and neck cancer.
Additionally, when the CT scan had an in-plane voxel size larger
than 1.5 mm scans were excluded.
Manual organ-at-risk (OAR) contouring

The OARs were manually delineated in the planning CT by a
dedicated team of experts according to previously published
Male 410 75 27 68 83 80
Age 0.293
18–65 years 368 67 20 50 64 62
>65 years 181 33 20 50 40 38

Tumour site 0.336
Oropharynx 194 35 15 38 45 43
Nasopharynx 24 4 3 8 2 2
Hypopharynx 53 10 2 5 10 10
Larynx 255 46 18 45 38 37
Oral cavity 23 4 2 5 9 9
Other 0 0 0

Tumour classification 0.895
Tis 3 1 0 0 0 0
T1 87 16 7 18 14 13
T2 180 33 12 30 29 28
T3 133 24 10 25 30 29
T4 146 27 11 28 31 30

Node classification 0.702
N0 247 45 18 45 47 45
N1 44 8 5 13 11 11
N2 240 44 15 38 44 42
N3 18 3 2 5 2 2

Systemic treatment 0.410
Yes 235 43 13 33 45 43
No 314 57 27 68 59 57

Treatment technique 0.675
3D-CRT 65 12 6 15 9 9
IMRT 394 72 27 68 81 78
VMAT 90 16 7 18 14 13

Neck irradiation 0.170
Bilateral 113 21 6 15 16 15
Unilateral 12 2 3 8 2 2
No 424 77 31 78 86 83

Abbreviations: 3D-CRT: IMRT: Intensity-Modulated Radiation Therapy; VMAT:
Volumetric Arc Therapy. CV: cross validation.



L.V. van Dijk et al. / Radiotherapy and Oncology 142 (2020) 115–123 117
international consensus delineation guidelines [26]. Clinically
available ABAS contours were often used as a basis for the
contouring.

In this study, the following 22 OARs, divided in 3 sub-groups,
were considered for auto-contouring:

1. Glandular: parotid glands (2�), submandibular glands (2x), and
thyroid gland

2. Upper digestive tract and airway-related: arytenoids (2�), buccal
mucosa (2�), extended oral cavity, pharyngeal constrictor mus-
cle (PCM), cricopharyngeal inlet (cricoid), supraglottic area,
glottic area, cervical esophagus

3. Central nervous system (CNS), vessels and bone: brainstem, cerebel-
lum, cerebrum, spinal cord, mandible, and carotid arteries (2�)

Deep learning contouring (DLC)

The DLC implementation (DLCExpertTM, Mirada Medical Ltd., UK)
deploys multiple CNNs to predict a dense voxel-wise labelling for
input CT images. A general 2D multiclass network with 14 layers
predicts all OARs at a coarse resolution and its output, along with
the CT image data, forms the input to a separately trained 10-layer
OAR-specific network to predict the full resolution contours (loss
function: cross entropy; batch size: 8 slices). Further details on this
method can be found in the 2017 AAPM Challenge [27]. From the
full set of 693 patients, 549 non-test cases were used for training
and 40 were used for cross-validation to guide the training process.
An independent validation and randomly selected cohort of 104
patients was excluded from training and cross-validation (Table 1)
for the performance assessment.
Atlas-based auto-contouring (ABAS)

The ABAS implementation (WorkflowBox 1.4, Mirada Medical
Ltd., UK) was designed using a representative set of 30 HN cancer
patients taken from the training set. The atlas-patient image regis-
tration method was based on Lucas-Kanade Optic Flow [28], and a
fixed set of atlases were used (i.e. no atlas selection) to generate a
consensus contour using a sub-pixel precision form of majority
voting [29,30]. The delineations of the atlas patients were carefully
checked and patients with metal CT artifacts were excluded from
the atlas patient set.
Fig. 2. Example of manual (green), ABAS (purple) and DLC (red) contours in two HN
cancer patients for validation cohort for 4 different HN regions.
Quantitative evaluation: DICE, HD and dose

Both DLC and ABAS were applied to all 104 patients from the
validation cohort. The performance of each method was evaluated
by comparing the differences between the automatically generated
and manual contours using the following metrics:

1. the Dice similarity coefficient (DICE) [31], which quantifies the
overlap between contours A and B: DICE ¼ 2 A\Bð Þ

AþB

2. Hausdorff distance 95th-percentile (HD), i.e. the 95th percentile
of the pairwise 3D point distances between two structures’ con-
tours [32]

3. Absolute dose difference between contours was determined
using the clinical treatment plans:
a. For the glandular and upper digestive tract and airway related

OARs, the difference between mean dose was used (|Dmean-
dose|)

b. For the CNS, vessels and bone OARs, the difference between
maximum dose was used (|Dmax-dose|)

Significance was assessed using the Wilcoxon signed rank test.
DICE and HDwas interpreted on a scale from ‘‘Very Poor” to ‘‘Good”
based on previous inter-observer and contouring studies [3,33,34].
Time evaluation and observer-variability

Two observers, an expert (more than 10 years’ experience) and
a beginner (less than 2 years’ experience), were randomly pre-
sented with either ABAS or DLC contours of 7 OARs which are
among the most clinically relevant (left parotid and submandibular
gland, thyroid gland, cricoid, glottic area, oral cavity, and PCM), and
adjusted them as necessary to make them suitable for clinical use.
Time was recorded from correcting first to last OAR and observers
did not take breaks within this procedure. This was done for 14
patients taken from the test cohort and was carried out over two
sessions, at least two months apart. The observers were blinded
to the origin of the contours in each session.

After the editing step, the 4 sets of contours, unmodified ABAS,
unmodified DLC, and the modified versions of each were obtained.
The DICE and |Dmean-dose| were calculated for each set against
the initial manual contours.
Subjective evaluation: Turing test

A subjective evaluation of the contouring methods was carried
out with a Turing test (also known as an imitation game), which
assumes clinical usability of auto-contours if they are difficult to
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distinguish from human (i.e. manual) contours [35]. The expert
observer was excluded from the test to prevent potential introduc-
tion of bias. Following the approach described by Gooding et al.
[35], each observer was blindly presented with random slices that
Fig. 3. Average and 95% Confidence Interval of DICE (Left) and HD (right) of ABAS (gr
indicated with ns. All others were significant with a p-value �0.001, except for the H
constrictor muscle; Cricoid: cricopharyngeal inlet; SpilCord: spinal cord; L: left; R: right
had an equal probability of featuring human, ABAS or DLC con-
tours, for 7 OARs (see time evaluation) taken from the validation
cohort patients. Using a web interface, the observers assessed the
following questions for 100 scenarios:
ay) and DLC (blue). Only non-significant difference between ABAS and DLC were
D difference of the oral cavity (p-value = 0.02). OAR abbreviations: PCM: pharynx
.
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1) A single contour: ‘‘How was this contour drawn?” Answer
options: ‘‘By a human” or ‘‘By a computer”.

2) Two contours: ‘‘Which contour do you prefer?” the preferred
contour is selected by the observer.

3) A single contour: ‘‘You have been asked to Quality Assure
this contour. Would you. . .”

Answer options:

a) ‘‘Require it to be corrected; there are large, obvious errors”,
b) ”Require it to be corrected; there are minor errors”,
c) ‘‘Accept it as it is; There are minor errors that need a small

amount of editing”,
d) ‘‘Accept it as it is; the contour is very precise”.

Results

For the 104 validation patients, ABAS failed to produce delin-
eations for the esophagus in 6 cases, the glottic area in 2, and the
left and right arytenoid in 66 and 43 patients, respectively. DLC
Fig. 4. Boxplots of absolute mean dose difference (|mean-dose|and for brainstem and spin
and DLC and manual contour (blue) of all test patients (25th , 50% and 75%, 5th–95th p
failed to produce delineations for the glottic area in 5, the thyroid
gland in 1, for the cricoid in 2, and the left and right arytenoid in 2
and 1 patients, respectively. If a contour was missing, the other
auto-contoured OAR of the same patient was excluded from the
evaluation to enable pair-wise comparison. Two example patients
are shown in Fig. 2.

For all glandular OARs (Fig. 3A and B), DICE and HD values for the
DLC significantly improved over ABAS (p < 0.001), with the largest
difference for the thyroid gland, where DICE increased from
0.60 ± 0.15 (ABAS) to 0.83 ± 0.08 (DLC) and the HD decreased from
6.7 ± 2.6 (ABAS) to 3.6 ± 3.0 mm (DLC). DICE values for the parotid
and submandibular glands increased on average from 0.72 ± 0.10
(ABAS) to 0.81 ± 0.08 (DLC). The mean dose differences (|Dmean-
dose|) between the glandular manual and auto-contours were
lower for DLC (0.9 ± 1.3 Gy) than for ABAS (1.9 ± 2.7 Gy) (Fig. 4A).

For all upper digestive tract and airway OARs (Fig. 3C and D), DICE
values were significantly higher for DLC compared to ABAS for all
OARs (p < 0.001), except for the oral cavity (p = 0.84). The largest
differences were seen for the cricoid, supraglottic larynx, glottic
area and PCM with average DICE values of 0.56 ± 0.14 (ABAS) and
al cord max dose difference (|max-dose|) between ABAS and manual contour (grey),
ercentile range, dot are outliers outside). For OAR abbreviations refer to Fig. 3.
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0.71 ± 0.10 (DLC) and average HD values of 6.4 ± 3.1 mm (ABAS)
and 4.1 ± 1.8 mm (DLC). The |Dmean-dose| values significantly
decreased for all, except for the right buccal mucosa (p = 0.72)
(Fig. 4B). For the arytenoids in particular, the |Dmean-dose| differ-
ence between ABAS (18.4 ± 27.8 Gy) and the DLC contours
(0.8 ± 1.0 Gy) was large. The highest average |Dmean-dose| with
DLC was found for the esophagus (2.6 ± 3.0 Gy) and cricoid
(2.5 ± 3.6 Gy).

For the CNS OARs (Fig. 3E and F), the DICE values were good for
ABAS (DICE >0.86) but were slightly lower for DLC (DICE >0.84) for
the brainstem, cerebrum, and spinal cord (p < 0.001). The HD val-
ues were significant higher with DLC compared to ABAS for the
brainstem and spinal cord (p < 0.001). The |Dmax-dose| values
were comparable between the ABAS and DLC, except for a signifi-
cant increase for the spinal cord (p = 0.04). For the mandible, the
DICE and HD values were good for ABAS, but significantly
improved with DLC (p < 0.001). For the carotid arteries, DICE values
were substantially higher for DLC (0.68 ± 0.11) than for ABAS
(0.29 ± 0.12) and HD substantially lower (DLC: 9.6 ± 10.4 mm
ABAS: 24.3 ± 15.8 mm). The |Dmax-dose| improved markedly,
reducing the average |Dmax-dose| < 1.3 Gy). The complete list of
average DICE, HD and |Dmean-dose| values for all OARs is in Sup-
plementary data 1.

For the time evaluation with the blinded approach, the 2 obser-
vers adjusted ABAS and DLC contours in two alternating sessions
separated by 2 months. The average adjustment delineation time
for the expert and beginner observer for the ABAS contours were
36 ± 7 and 59 ± 14 minutes, reducing slightly to 34 ± 6 and 54 ± 8
minutes for the DLC contours, respectively. The delineation time
reduction was only significant for the beginner (Fig. 5).

Assessing the inter-observer variation, the DICE values between
the adjusted auto-contours and the initial manual contours were
for ABAS 0.79 ± 0.08 (beginner) and 0.81 ± 0.05 (expert) and for
DLC 0.80 ± 0.06 (beginner) and 0.82 ± 0.05 (expert). Additionally,
manual adjustments of the DLC contours showed little improve-
ment in DICE compared to the unedited DLC contours, tested in
Fig. 5. Time evaluation for adjusting 7 OARs with ABAS vs. DLC for the expert and
beginner observer (noted as obs.).
the validation cohort, in 4 of the 7 OARs (refer to Supplementary
data 2 for individual DICE values). The |Dmean-dose| did not
change significantly in 5 of the 7 OARs. The average |Dmean-
dose| for all 7 OARs and patients was 2.5 ± 2.3 Gy (ABAS) and
1.3 ± 1.6 Gy (DLC) without manual adjustment and 0.9 ± 0.7 Gy
(ABAS) and 0.8 ± 0.7 Gy (DLC) with manual adjustment (Supple-
mentary data 3). This suggests that DLC is approaching the level
of inter-observer variability for these OARs.

The subjective evaluation (Turing test) was performed by 12
observers: 10 physicians and 2 radiation oncology technicians
(involved in clinical practice in OAR contouring and treatment
planning). The Turing test was fully completed by 9 observers, gen-
erating evaluations for 965 scenarios. For the question ‘‘whether
contours were human or computer-created”, 40% of the human-
created contours were misclassified as computer-generated
(Fig. 6A). The misclassification rate for ABAS contours was 26%
and for DLC contours it was 35%. For 5 of the 7 OARs, DLC contours
were misclassified being human-created (34%) more often than
ABAS (15%) (Fig. 6B). The difference was greatest for the thyroid
and parotid gland. For the question ‘‘which of 2 contours was pre-
ferred”, human contours were substantially more often preferred
(81–82%) than either ABAS (18%) or DLC (19%) (Fig. 6C). For obser-
vers choosing between DLC and ABAS, DLC was selected substan-
tially more often (66%). For the individual OARs, DLC was
preferred more often over ABAS for all OARs except for the glottic
area (Fig. 6D). The responses to the question ‘‘Would you correct
the contour?” suggest low rates of obvious errors in both human
and DLC contours, 7% and 9% respectively (Fig. 6E). In contrast,
30% of ABAS contours were considered to have obvious errors. Nev-
ertheless, DLC had higher minor error rates than human contours,
and consequently lower rates of being considered ‘‘precise” by the
observers. For all individual OARs (Fig. 6F), human and DLC con-
tours were ‘required to be corrected’ less often than ABAS except
for the oral cavity. Similarly, human-drawn contours were required
to be corrected less often than DLC contours, except for the thyroid,
cricoid and PCM.

An overview of the improvement of all organs is given in Fig. 7.
For additional volume analysis refer to Supplementary data 4.
Discussion

DLC was trained on a large cohort of 589 HNC patients with 22
high-quality manual HN OAR contours. This work showed that DLC
significantly improved the auto-contours of the majority of 22
OARs (Fig. 7), compared to ABAS. The comprehensive evaluation
that was carried out on an independent test set (N = 104), using
quantitative measures of overlap, distance and dose, as well as
subjective assessments and editing time, demonstrated that the
greatest improvements were observed in the glandular structures,
the upper digestive tract and airway OARs (e.g. the cricoid, PCM,
supraglottic larynx and glottic area), arytenoids, and the carotid
arteries. These results also translated to a decreased absolute dif-
ference between the mean dose/max dose of the auto-contoured
and manual OARs (|Dmean-dose|max-dose|in addition to reduced
variability between patients. The small dose differences indicate
that DLC can be a valuable tool for large retrospective dose analy-
ses such as development and validation of normal tissue complica-
tion probability (NTCP) models.

Our results show similar DICE scores to those by Liang et al. [22]
(e.g. parotid gland: 0.85 ± 0.05, oral cavity: 0.91 ± 0.04), who intro-
duced the innovative approach of training two CNNs on 186
nasopharynx patients, the first detecting a bounding box surround-
ing the OAR, the second contouring the OAR within it. The higher
patient number in our study would theoretically make the system
more robust to outlier cases. For the parotid gland, this resulted in



Fig. 6. Subjective evaluation. Response to questions: ‘‘How was this contour drawn: by a human or computer?” (A and B); ‘‘Which contour do you prefer?” choice between 2
blinded contour (C and D); ‘‘You have been asked to Quality Assure this contour. Would you. . . require them to be corrected or accept them as they are?” (E and F). For OAR
abbreviations refer to Fig. 3.
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only marginal improvement. Ibragimov et al. [21] showed slightly
lower DICE values (e.g. parotid gland: 0.78 ± 0.05, submandibular
gland: 0.73 ± 0.09), with a CNN trained on fewer than 50 HN cases.
In contrast to these studies, in the current study, two consecutive
CNNs were trained on a much larger and diverse patient cohort,
in addition to using an independent validation cohort, providing
better estimates of the generalizability and performance. The mod-
els also cover a greater number of OARs, including all upper diges-
tive tract and airway OARs in accordance with the most recent
delineation guidelines [26].

The time evaluation suggests that DLC may reduce the overall
delineation time compared to ABAS, especially for inexperienced
delineators. ABAS has been employed for a number of years in
our clinic now, manual contouring of the limited OARs studied
for the time evaluation study can take up to 90 minutes per patient
(internal evaluation). This is in line with previous reported manual
contouring time of 108 min for a set of six OARs in the head and
neck area [36].

The comparison between the contours of both observers and
the DLC, suggests that DLC is approaching the level of inter-
observer variability for these OARs in terms of DICE and |mean-
dose|The DICE variation reported between observers is in line with
previous studies reporting inter-observer variability [3,37]. Since it
is challenging to assess clinical usability from geometric measures
alone (e.g. DICE showed little improvement after manual editing in
the time evaluation), a subjective evaluation was also performed.
This confirmed that manual contours remain preferable over both
DLC and ABAS contours by the observers (Fig. 6C). However, the
Turing test also showed that it remained relatively difficult to iden-
tify contours as being human- or computer created (Fig. 6B). The
overall misclassification of human contours was 41% (Fig. 6A),
and 32% of the human contours were marked as requiring correc-



Fig. 7. Overview of the results of all HN OARs. Green indicates that DLC is
significantly better than ABAS, orange that ABAS is significantly better than DLC and
blue indicates that there is no significant difference. Corr. Needed = Objective
evaluation indicated that manual corrections are advised.
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tion (Fig. 6E). The latter indicates the inter-observer variation.
Moreover, DLC performed substantially better than the ABAS, since
the DLC contours for almost all OARs were more often confused
with human contours (Fig. 6B). They were also more often pre-
ferred (Fig. 6D) and considered directly clinically usable (Fig. 6E
and F) than the ABAS contours for nearly all OARs. Overall, DLC
appeared to perform exceedingly well for the parotid and thyroid
gland, cricoid inlet, and PCM, in line with the quantitative and |
mean-dose|results (Fig. 4).

For the CNS OARs, performance measures with ABAS were
already good and the DLC (DICE > 0.84 and HD < 3.3 mm) did not
out-perform ABAS, approaching the inter-observer variation [38].
This study may be somewhat biased towards the ABAS, since the
basis of the manual delineations used in this study were often
ABAS (yet with different atlas patients) contours, especially for
the CNS and mandible contours. This bias is minimized by the thor-
ough checks and edits of all manual delineations to conform them
to the new consensus guidelines, which were performed by a small
team of experts.

Another limitation concerning the subjective evaluation is the
presentation of a single slice per contour to the observers, having
access to three-dimensional information might change the
results. In addition, ABAS of a single system was compared to
the DLC. Other studies showed similar DICE values between ABAS
and manual contours with other systems [13,14], but the ABAS
contours were subjectively better scored [14]. Moreover, the time
and inter-observer evaluation was limited by the number of
observers and patients. Furthermore, the DLC did not perform
well on CT scans with very different voxel sizes (in-plane
>1.5 mm), but did perform well for both non- and contrast-
enhanced CT scans, and for patients with the different tumour
sites. In cases where the auto-contouring failed to produce out-
put, no contour was returned. For DLC, this is because no activa-
tion threshold was reached to consider any voxel inside the
contour. For ABAS, this is because there were no voxels where
the majority of the multi-atlas registrations contours overlapped.
Additionally, while ABAS failed to produce arytenoid contours for
many patients (69), DLC failed for only 2, illustrating the difficulty
for the ABAS to contour small OARs and the relative robustness of
DLC. Nevertheless, DLC occasionally omitted to produce contours
and this might be helped by an even larger cohort. Finally, our
results may be improved by incorporating other image modalities
when training DLC models.

A DLC model can be more robust than ABAS since it can be
trained using as much data as is available, including patients
with metal artifacts and diverse anatomy. Additionally, it incor-
porates appearance and patterns of structures with convolution
filters, rather than the anatomic location-and intensity-only
approach of the ABAS. For these two reasons, DLC likely outper-
forms ABAS especially in areas with more anatomic variability
[27,39].

As the Turing Test showed a higher acceptance of DLC con-
tours than ABAS contours (Fig. 6E and F) it was expected to find
a much larger time saving from the time evaluation. The reason
for the substantial editing times might be a difference between
the observer groups. Medical doctors that participated in the Tur-
ing Test might be willing to accept minor errors, while the delin-
eators in the time evaluation were more focused on editing all
minor errors. This is partly confirmed by the findings presented
in Supplementary Data 2, where it can be seen that, for some
OARs, the inter-observer variability results in similar DICE scores
for human–human comparisons as for human-DLC comparisons.
Future work should therefore focus on identifying the reasons
and significance of the large editing time of DLC that was found
in this study.

In conclusion, DLC, trained on a large cohort, outperformed
ABAS for the majority of HN OARs. The improved quantitative per-
formance translated to smaller dosimetric differences compared to
the manual contours. Although manual contours were clearly pre-
ferred and less often required to be corrected than both DLC and
ABAS contours, DLC outperformed the ABAS in nearly all subjective
assessments. Additionally, the time evaluation showed significant
benefit for the inexperienced delineator. DLC has the potential to
reduce clinical burden by reducing the delineation time required
to produce acceptable contours and currently replaced ABAS in
routine use in our clinic.
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