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Background and Purpose: To date, data used in the development of Deep Learning-based automatic con-
touring (DLC) algorithms have been largely sourced from single geographic populations. This study aimed
to evaluate the risk of population-based bias by determining whether the performance of an autocon-
touring system is impacted by geographic population.
Materials and methods: 80 Head Neck CT deidentified scans were collected from four clinics in Europe
(n = 2) and Asia (n = 2). A single observer manually delineated 16 organs-at-risk in each.
Subsequently, the data was contoured using a DLC solution, and trained using single institution
(European) data. Autocontours were compared to manual delineations using quantitative measures. A
Kruskal-Wallis test was used to test for any difference between populations. Clinical acceptability of
automatic and manual contours to observers from each participating institution was assessed using a
blinded subjective evaluation.
Results: Seven organs showed a significant difference in volume between groups. Four organs showed
statistical differences in quantitative similarity measures. The qualitative test showed greater variation
in acceptance of contouring between observers than between data from different origins, with greater
acceptance by the South Korean observers.
Conclusion: Much of the statistical difference in quantitative performance could be explained by the dif-
ference in organ volume impacting the contour similarity measures and the small sample size. However,
the qualitative assessment suggests that observer perception bias has a greater impact on the apparent
clinical acceptability than quantitatively observed differences. This investigation of potential geographic
bias should extend to more patients, populations, and anatomical regions in the future.
� 2023 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 186 (2023) 1–14 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Contouring is an integral part of the patient pathway for radio-
therapy planning [2,12]. However, this task is affected by interob-
server variation, even amongst the most experienced clinicians [3],
which can lead to adverse patient outcomes [4]. Automation of
contouring using deep learning contouring (DLC), can improve con-
sistency and save time for clinicians [5–9]. DLC models are trained
using large datasets, to learn the variations in the appearance of
anatomy within the training population. Such datasets may be
derived from hospitals or open-source collections [6,9–24].
Although artificial intelligence autocontouring models have been
evaluated in a range of geographic regions [22,5–7,9–15,17–20,2
4–28], the clinical impact of applying these models across differing
geographic populations is unclear.

Artificial intelligence (AI) models can be subject to several
known biases including sample bias, temporal bias, and population
bias [1,29]. Awareness of potential biases should be considered in
the use of clinical deep learning solutions. To encourage the devel-
opment of good AI-based clinical solutions, regulators from the
United Kingdom, Canada and the United States have identified
principles that could improve minimisation of biases. This paper
explores the principle of the use of data sets that are representative
of the intended patient population [30].

While the impact of patient diversity in training data has not
been investigated in the context of DLC it has been investigated
and found in cardiology [31–32]. However, radiotherapy patients
already represent a cohort that stands apart from the general pop-
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Table 1
Publications showing deep learning autocontouring models and their derived data location.

Author Total Datasets Anatomy Reported Geographic Data Source Data reported disaggregated for race

Van Dijk et al [11] 589 Head Neck Netherlands N
Nikolov et al [12] 838 Head Neck United Kingdom N
Liu et al [13] 237 Pelvis United Kingdom N
Oktay et al [14] 761 Pelvis (519)Head Neck (242) United Kingdom N
Almberg et al [9] 200 Breast Norway N
Blanchard et al [15] 100 Head Neck France N
Iyer et al [16] 242 Head Neck United States N
Song et al [17] 199 Pelvis China N
Duan et al [18] 84 Pelvis United States N
Ma et al [19] 535 Pelvis China N
Byun et al [20] 111 Breast South Korea N
Kim et al [21] 100 Head Neck South Korea N
Fernandes et al [22] 127 Thorax Netherlands N
Kiljunen et al [6] <900 Pelvis Finland N
Cardenas et al [23] 71 Head Neck United States N
Weston et al [24] 84 Abdomen United States N

Table 2
Model of CT Scanner used for data acquisition.

Clinic CT Scanner Model(s)

University Medical Center Groningen,
Department of Radiation Oncology,
Groningen, The Netherlands

Siemens Somatom Definition AS

Yonsei Cancer Centre, Yonsei
University Health System, Seoul,
South Korea

Siemens Sensation OpenToshiba
Acquilion

Maastro, Department of Radiation
Oncology, Maastricht, The
Netherlands

Phillips Gemini TF 64Siemens
Biograph 40Siemens Sensation
10Siemens Sensation Open

Shantou University Medical Centre,
Guangdong, China

Phillips Brilliance Big Bore

Risk of population bias in deep learning autocontouring
ulation. The images are acquired in a controlled manner, that dis-
tinguishes them from diagnostic imaging, for example the use of a
flatbed. Typically, DLC models use data sourced from and reflecting
a single geographic population (Table 1, Supplementary Data). Dif-
fering contouring protocols present one challenge to deploying
Fig. 1. An example of the single observer contours on randomly selected cases from each
shown. A: Shantou University Medical College, China; B: Yonsei University Medical Cent
Netherlands.

2

models between different institutions and geographic regions,
however the use of clinical contouring guidelines seeks to mitigate
this risk [33]. There is also some evidence that differences in imag-
ing protocols will impact performance [27]. Nevertheless, it is
unclear whether a DLC model trained in one geographic population
would perform as well in a difference geographic population with
differing racial demographics, and whether any difference in per-
formance represent a risk to equality of treatment of patients.

The goal of this study is to evaluate this risk by determining the
impact differing geographic populations (as a proxy for racial
demographics) have on performance of a deep learning autocon-
touring system trained using data from a single geographic region.
Materials and methods

Eighty primary head and neck cancer datasets were collected,
20 from each of four clinics. The participating clinics were from
Europe (University Medical Center Groningen, Groningen, The
Netherlands; Maastro, Maastricht, The Netherlands) and Asia
institution. Transverse slices taken at the caudal edge of the C1 spinous process are
re, South Korea; C: Maastro, Netherlands; D: University Medical Center Groningen,
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(Shantou University Medical Centre, Guangdong, China; Yonsei
University Health System, Seoul, Republic of Korea). Patients were
immobilized supine in thermoplastic shell mask, and scanned from
cranium, down to carina. The data were acquired using a range of
CT scanners, detailed in Table 2 of the Supplementary Material.
Patients who had an organ-at-risk removed, and or had disease
burden to significantly disturb neighboring anatomy, were
excluded to prevent more extreme outliers confounding results.
Table 3
Median volume(cm3) of single observer reference contours. Bold italics indicate significanc
p < 0.003125.

Structure Reference Contour Volume (cm3): Median and IQR

Groningen Maastro

Brainstem 26.629 (28.469–24.038) 25.629 (28.584–24.000)
Buccal Mucosa Left 8.545 (10.267–7.477) 9.312 (10.868–8.124)
Buccal Mucosa Right 9.618 (10.728–8.811) 9.066 (10.626–7.569)
Cricopharyngeal Inlet 5.450 (6.410–4.638) 5.001 (5.474–4.370)
Glottic Area 3.0764 (4.1609–2.5219) 2.615 (3.648–1.737)
Mandible 66.585 (75.480–60.028) 61.574 (66.570–54.452)
Oesophagus Cervical 2.638 (3.298–1.765) 2.732 (3.123–2.292)
Oral Cavity (Extended) 119.433 (132.743–

111.174)
124.060 (135.737–
108.696)

Parotid Left 31.118 (38.055–26.199) 26.715 (31.509–23.091)
Parotid Right 31.785 (37.667–28.842) 25.327 (32.875–21.799)
Pharyngeal Constrictor

Muscles
16.426 (19.759–14.656) 18.578 (22.400–15.493)

Spinal Cord 16.693 (19.996–14.600) 17.262 (18.239–15.352)
Submandibular Left 10.682 (12.047–8.558) 10.344 (12.922–8.685)
Submandibular Right 10.720 (12.918–9.464) 10.510 (13.571–9.055)
Supraglottic Larynx 16.461 (20.533–13.237) 15.941 (19.423–11.523)
Thyroid 13.539 (18.684–9.044) 13.428 (21.535–9.939)

Fig. 2. DSC per organ for all patient origins. Small variations in scores can be observed
always better or worse for the same patient origin.

3

Race is not recorded in the oncology electronic health record at
any of the participating clinics. Therefore, it was assumed all
patients submitted to the study were reasonably representative
of racial demographics of each respective geographic location.
Available demographic information for age and gender can be
found in Table 8 (Supplementary Material). Datasets were anon-
ymised using tools available on the local radiotherapy treatment
planning system before analysis.
e after Bonferroni correction for the multiple hypothesis testing across all organs with

Kruskall-Wallis Test
(p-value)

Shantou Yonsei

25.047 (26.976–23.698) 28.722 (29.895–26.312) 0.0237
5.362 (6.394–4.470) 6.243 (7.418–4.030) <0.001
5.191 (6.373–4.743) 6.408 (7.911–3.876) <0.001
3.893 (4.299–3.467) 3.579 (4.385–3.161) <0.001
2.142 (2.807–1.614) 2.784 (3.455–2.360) 0.104
88.420 (97.066–84.396) 90.890 (94.912–76.111) <0.001
1.9759 (2.4196–1.2697) 2.701 (3.318–1.718) 0.0714
97.749 (110.795–
88.645)

115.686 (130.416–
109.002)

<0.001

23.848 (29.468–21.322) 29.910 (36.219–22.778) 0.0528
23.692 (27.879–21.397) 28.135 (40.020–22.274) 0.0146
16.012 (18.565–12.717) 15.075 (17.751–13.125) 0.0727

12.571 (14.488–11.483) 15.979 (17.855–12.289) <0.001
9.211 (10.402–7.828) 9.647 (12.151–8.101) 0.342
9.300 (10.598–8.005) 10.351 (12.484–8.899) 0.245
11.279 (13.072–7.972) 13.507 (14.491–12.738) <0.001
11.900 (16.946–8.796) 16.462 (18.396–14.515) 0.277

for all organs. Some organs (e.g., PCM) have larger differences. Performance is not



Table 4
Results of Kruskal-Wallis non-parametric ranking test. H(chi-squared) test statistic with 3 degrees of freedom; Italics indicate significance level of p < 0.05. Bold italics indicate
significance after Bonferroni correction to p < 0.00104.

Structure KWT DSC KWT NAPL KWT HD2D95%

Brainstem H(3) = 8.78; p = 0.0323 H(3) = 9.44; p = 0.024 H(3) = 2.97; p = 0.396
Buccal Mucosa Left H(3) = 17.1; p = 0.000659 H(3) = 0.971; p = 0.808 H(3) = 4.90; p = 0.179
Buccal Mucosa Right H(3) = 19.6; p = 0.000207 H(3) = 1.04; p = 0.791 H(3) = 9.17; p = 0.0271
Cricopharyngeal Inlet H(3) = 4.54; p = 0.209 H(3) = 0.771; p = 0.856 H(3) = 3.07; p = 0.381
Glottic Area H(3) = 6.54; p = 0.0881 H(3) = 6.03; p = 0.11 H(3) = 12.5; p = 0.00595
Mandible H(3) = 10.0; p = 0.0183 H(3) = 15.6; p = 0.00138 H(3) = 8.88; p = 0.0309
Oesophagus Cervical H(3) = 9.14; p = 0.0275 H(3) = 8.16; p = 0.0428 H(3) = 4.65; p = 0.199
Oral Cavity (Extended) H(3) = 8.47; p = 0.0372 H(3) = 11.1; p = 0.0112 H(3) = 3.58; p = 0.311
Parotid Left H(3) = 7.86; p = 0.0491 H(3) = 9.63; p = 0.022 H(3) = 8.24; p = 0.0413
Parotid Right H(3) = 16.7; p = 0.00508 H(3) = 17.8; p = 0.00328 H(3) = 6.3; p = 0.278
Pharyngeal Constrictor Muscles H(3) = 19.1; p = 0.000256 H(3) = 10.7; p = 0.0132 H(3) = 9.52; p = 0.0231
Spinal Cord H(3) = 7.34; p = 0.0618 H(3) = 0.853; p = 0.837 H(3) = 4.97; p = 0.174
Submandibular Left H(3) = 3.34; p = 0.342 H(3) = 9.36; p = 0.0248 H(3) = 2.14; p = 0.544
Submandibular Right H(3) = 21.7; p = 7.7e-05 H(3) = 20.3; p = 0.000149 H(3) = 8.62; p = 0.0347
Supraglottic Larynx H(3) = 4.10; p = 0.0238 H(3) = 2.38; p = 0.498 H(3) = 2.95; p = 0.4
Thyroid H(3) = 9.4576; p = 0.02379 H(3) = 13.8; p = 0.00313 H(3) = 8.89; p = 0.0307

Risk of population bias in deep learning autocontouring
The study was submitted for ethical consideration despite being
retrospective analysis and not including human subjects or special
category data since the underlying assumption is that location
relates to demographic ethnicity. The study was permitted by
The Medical Ethics Review Board of the University Medical Center
Groningen (METc UMCG) (METc 2022/315).

A DLC system (DLCExpertTM, Mirada Medical Ltd., UK) was used
to contour all cases. The head and neck model was trained from
589 datasets [11]. The training structures were delineated as per
the international head and neck organ at risk delineation guideli-
nes by the clinical institution providing the dataset [34], as previ-
ously reported [11]. This clinic also provided an independent
evaluation set, acquired completely independently several years
prior, thus the demographic of one evaluation group is intention-
ally matched to that of the training set.

A single observer recontoured all evaluation cases regardless of
their geographic origin, to mitigate differences in contouring style
between institutions being a confounding factor and to remove
inter-observer variation in contouring. The structures contoured
were Brainstem, Buccal Mucosa (BM) Left, BM Right, Cricopharyn-
geal Inlet, Glottic Area, Mandible, Oesophagus Cervical, Oral Cavity,
Parotid Left and Parotid Right, Pharyngeal Constrictor Muscle
(PCM), Spinal Cord, Submandibular Left, Submandibular Right,
Supraglottic Larynx, Thyroid. All structures were delineated
according to available consensus guidance [34] using Mirada
RTxTM (Mirada Medical Ltd, Oxford, United Kingdom). Example
contours from the single observer are shown in Fig. 1.
Quantitative evaluation

Open-source code [35] was used to compare the autocontours
to the single observer reference contours, treating the single obser-
ver contours as ‘‘ground truth”. Three similarity measures, 3D Dice
similarity coefficient (DSC), 2D 95% Hausdorff Distance (HD2D95)
and the Normalized Added Path Length (NAPL, used to give a broad
understanding and to reduce the risk that any metric masks possi-
ble bias. An acceptance tolerance of 1 mm was used for the NAPL.
The 2D 95th percentile Hausdorff Distance was selected as Radio-
therapy Structure Sets are a 2D representation and this measure
would give an indication of maximum in-plane error. Furthermore,
the structure volume (cm3) of the reference contour was compared
between groups to evaluate any differences in the patient popula-
tions. A description of these measures, as defined [35], is given in
the Supplementary Material.
4

A Kruskal-Wallis Test was used to determine if there was a sta-
tistically significant difference in quantitative measures between
the four clinics. A significant level of 0.05 (prior to Bonferroni cor-
rection) was used to determine significance. Subsequently, Bonfer-
roni correction was used to reduce the risk of Type I error. A Dunn’s
test was applied to organs that showed significance after correc-
tion, to identify differences between groups. Statistical tests and
plots were performed, in RStudio (Posit Software PBC, Boston,
MA, USA).
Qualitative assessment

Quantitative measures cannot easily indicate whether differ-
ences would impact clinical practice. Therefore, a subjective
assessment of clinical acceptability was performed using a blinded
web-based implementation [36] to understand better the clinical
context. Each participating center had two clinicians answer a set
of 200 questions each. The observers were experienced in the con-
touring of Head and Neck patients with an average 14 years’ expe-
rience, a range of 2 years to 34 years. Observers were asked: ‘‘You
have been asked to QA these contours for clinical use by a col-
league. Would you. . .”. The available choice of responses was a
four-point Likert scale:

(1) ‘‘Accept them as they are; They contours are very precise.”
(2) ‘‘Accept them as they are; There are minor errors, but these

are clinically not significant.”
(3) ‘‘Require them to be corrected; There are minor errors that

need a small amount of editing.”
(4) ‘‘Require them to be corrected; There are large, obvious,

errors.”

Each question showed a single randomised Head Neck image
slice of an anonymised patient, from a collection of 142,976
images. Six organs included in the qualitative test were chosen
prior to quantitative analysis and were selected to represent a wide
range of functions and anatomical shapes. The image in each ques-
tion was randomly selected to be uniformly distributed over the
organs and then slices. Observers were shown only images that
possessed a contour, as such false negatives from DLC were omit-
ted. Randomisation of the images can result in duplicates. Obser-
vers were blinded to patient geographic origin and to the method
of contour creation (manual or DLC). The single observer reference
contours were used as the manual contours to remove guideline
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interpretation as a confounding factor. The results were assessed
when grouped by observer origin and by patient origin.
Results

The head & neck autocontouring model failed to predict some
structures in the Test dataset; the Glottic Area for one patient
Table 5
Reference Contour Volume (cm3) of all organs.

Structure Statistic Reference

Groningen

Brainstem Median 26.629
Q1 24.038
Q3 28.469
IQR 4.331

Buccal Mucosa Left Median 8.545
Q1 7.477
Q3 10.267
IQR 2.790

Buccal Mucosa Right Median 9.618
Q1 8.811
Q3 10.728
IQR 1.917

Cricopharyngeal Inlet Median 5.450
Q1 4.638
Q3 6.410
IQR 1.772

Glottic Area Median 3.0764
Q1 2.5219
Q3 4.1609
IQR 1.639

Mandible Median 66.585
Q1 60.028
Q3 75.480
IQR 15.453

Oesophagus Cervical Median 2.638
Q1 1.765
Q3 3.298
IQR 1.533

Oral Cavity (Extended) Median 119.433
Q1 111.174
Q3 132.743
IQR 21.569

Parotid Left Median 31.118
Q1 26.199
Q3 38.055
IQR 11.857

Parotid Right Median 31.785
Q1 28.842
Q3 37.667
IQR 8.825

Pharyngeal Constrictor Muscles Median 16.426
Q1 14.656
Q3 19.759
IQR 5.103

Spinal Cord Median 16.693
Q1 14.600
Q3 19.996
IQR 5.396

Submandibular Left Median 10.682
Q1 8.558
Q3 12.047
IQR 3.488

Submandibular Right Median 10.720
Q1 9.464
Q3 12.918
IQR 3.454

Supraglottic Larynx Median 16.461
Q1 13.237
Q3 20.533
IQR 7.296

Thyroid Median 13.539
Q1 9.044
Q3 18.684
IQR 9.640

5

and the Oesophagus in three patients, all from the Shantou dataset.
Where a structure has failed to predict, the patient was excluded
from the analysis of that structure.

In the quantitative assessment, the median volume (cm3) and
length (cm) of single observer reference contours were compared
per clinic. Statistically significant volume differences (p < 0.001)
between groups were observed for BM (L&R), Cricopharyngeal
Contour Volume (cm3)

Maastro Shantou Yonsei

25.629 25.047 28.722
24.000 23.698 26.312
28.584 26.976 29.895
4.584 3.278 3.582
9.312 5.362 6.243
8.124 4.470 4.030

10.868 6.394 7.418
2.744 1.924 3.388
9.066 5.191 6.408
7.569 4.743 3.876

10.626 6.373 7.911
3.057 1.630 4.036
5.001 3.893 3.579
4.370 3.467 3.161
5.474 4.299 4.385

11.04 8.32 1.225
2.615 2.142 2.784
1.737 1.614 2.360
3.648 2.807 3.455
1.911 1.193 1.095

61.574 88.420 90.890
54.452 84.396 76.111
66.570 97.066 94.912
12.118 12.670 18.801
2.732 1.9759 2.701
2.292 1.2697 1.718
3.123 2.4196 3.318
0.831 1.150 1.600

124.060 97.749 115.686
108.696 88.645 109.002
135.737 110.795 130.416
27.041 22.150 21.414
26.715 23.848 29.910
23.091 21.322 22.778
31.509 29.468 36.219
8.418 8.146 13.441

25.327 23.692 28.135
21.799 21.397 22.274
32.875 27.879 40.020
11.076 6.482 17.746
18.578 16.012 15.075
15.493 12.717 13.125
22.400 18.565 17.751
6.907 5.848 4.626

17.262 12.571 15.979
15.352 11.483 12.289
18.239 14.488 17.855
2.887 3.005 5.566

10.344 9.211 9.647
8.685 7.828 8.101

12.922 10.402 12.151
4.237 2.574 4.050

10.510 9.300 10.351
9.055 8.005 8.899

13.571 10.598 12.484
4.516 2.594 3.585

15.941 11.279 13.507
11.523 7.972 12.738
19.423 13.072 14.491
7.900 5.100 1.753

13.428 11.900 16.462
9.939 8.796 14.515

21.535 16.946 18.396
11.596 8.150 3.881
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Inlet, Mandible, Oral Cavity, Spinal Cord and Supraglottic Larynx
(Table 3, Supplementary Material). All organs, except Cervical
Oesophagus, showed length differences (p < 0.001) between
groups (Table 7, Supplementary Material). Reference Contour Vol-
ume (cm3) and 2D 95% HD to be moderately positively correlated (r
(75) = 0.613, p < 0.001), for Oesophagus Cervical. Whilst Reference
Table 6
Reference Contour Length (cm) for all organs.

Structure Statistic Reference

Groningen

Brainstem Median 230.1
Q1 218.8
Q3 245.7
IQR 27.0

Buccal Mucosa Left Median 132.99
Q1 121.74
Q3 153.79
IQR 32.05

Buccal Mucosa Right Median 143.32
Q1 133.99
Q3 159.59
IQR 25.6

Cricopharyngeal Inlet Median 113.48
Q1 90.08
Q3 130.06
IQR 39.98

Glottic Area Median 71.72
Q1 62.51
Q3 80.22
IQR 17.71

Mandible Median 902.8
Q1 794.7
Q3 944.3
IQR 149.54

Oesophagus Cervical Median 37.15
Q1 28.04
Q3 48.16
IQR 20.12

Oral Cavity (Extended) Median 641.5
Q1 545.0
Q3 765.6
IQR 220.6

Parotid Left Median 316.3
Q1 293.3
Q3 388.8
IQR 95.5

Parotid Right Median 336.8
Q1 299.3
Q3 393.7
IQR 94.4

Pharyngeal Constrictor Muscles Median 469.9
Q1 427.6
Q3 512.5
IQR 84.9

Spinal Cord Median 299.1
Q1 270.3
Q3 346.3
IQR 76.0

Submandibular Left Median 135.24
Q1 113.25
Q3 148.79
IQR 35.54

Submandibular Right Median 131.51
Q1 115.29
Q3 149.42
IQR 34.13

Supraglottic Larynx Median 257.9
Q1 231.2
Q3 300.2
IQR 69.0

Thyroid Median 236.10
Q1 184.63
Q3 328.87
IQR 144.24

6

Contour Length (cm) and NAPL to have low negative correlation
(r(78) = -0.487, p < 0.001) for Mandible.

The measures DSC (Fig. 2), NAPL and HD2D95 calculated for
each organ, across all groups showed small differences between
the clinics. Boxplots for NAPL (Fig. 7) and HD2D95 (Fig. 8) can be
found in Supplementary Material. Visually, the PCM shows the
Contour Length (cm)

Maastro Shantou Yonsei

153.1 152.0 160.6
144.0 144.4 154.9
182.7 159.2 168.8
38.7 14.8 13.9

100.90 717.8 68.57
85.86 57.06 43.50

115.36 83.13 87.48
29.5 26.07 42.98
96.19 68.14 73.56
88.45 62.83 48.21

124.47 82.61 90.43
36.02 19.78 42.22
69.69 56.09 54.78
62.12 53.33 50.12
93.19 60.65 62.42
31.07 7.32 12.3
47.85 34.76 43.73
33.76 31.17 39.18
63.40 46.12 56.31
29.64 14.95 17.13

554.4 625.6 645.9
504.1 602.3 601.1
702.6 671.0 676.6
198.5 68.7 75.5
33.97 25.295 37.36
25.32 12.970 22.53
40.87 30.567 43.33
15.55 17.597 20.8

487.3 354.7 375.6
393.9 317.5 354.4
602.0 418.5 421.8
208.1 101.0 67.4
193.2 192.4 211.0
174.6 151.3 186.8
267.5 218.8 238.1
92.9 67.5 51.3

196.4 183.3 215.1
169.3 159.5 168.6
251.1 196.8 240.8
81.8 37.3 72.2

340.6 293.8 314.1
290.6 238.7 262.7
521.5 315.5 326.3
230.9 76.8 63.6
205.8 173.1 200.5
188.0 167.3 173.5
237.9 181.8 212.3
49.9 14.5 38.8
84.91 79.09 79.21
74.39 66.99 72.46
99.73 82.81 89.47
25.34 15.11 17.01
90.04 81.19 79.12
77.65 72.92 73.05

111.44 86.56 91.42
33.79 13.64 18.37

207.9 134.07 158.98
161.0 97.80 128.82
285.9 167.39 175.80
124.9 69.59 46.98
203.41 161.36 189.9
149.96 132.85 167.7
260.67 196.91 218.4
110.71 64.06 50.7



Table 7
Median Reference Contour Length (cm) of single observer reference contours. Bold italics indicate significance after Bonferroni correction for the multiple hypothesis testing
across all organs with p < 0.003125.

Structure Reference Contour Length (cm): Median (IQR) Kruskall-Wallis Test
(p-value)

Groningen Maastro Shantou Yonsei

Brainstem 230.1 (245.7–218.8) 153.1 (182.7–144.0) 152.0 (159.2–144.4) 160.6 (168.8–154.9) <0.001
Buccal Mucosa Left 132.99 (153.79–121.74) 100.90 (115.36–85.86) 717.8 (83.13–57.06) 68.57 (87.48–43.50) <0.001
Buccal Mucosa Right 143.32 (159.59–133.99) 96.19 (124.47–88.45) 68.14 (82.61–62.83) 73.56 (90.43–48.21) <0.001
Cricopharyngeal Inlet 113.48 (130.06–90.08) 69.69 (93.19–62.12) 56.09 (60.65–53.33) 54.78 (62.42–50.12) <0.001
Glottic Area 71.72 (80.22–62.51) 47.85 (63.40–33.76) 34.76 (46.12–31.17) 43.73 (56.31–39.18) <0.001
Mandible 902.8 (944.3–794.7) 554.4 (702.6–504.1) 625.6 (671.0–602.3) 645.9 (676.6–601.1) <0.001
Oesophagus Cervical 37.15 (48.16–28.04) 33.97 (40.87–25.32) 25.295 (30.567–12.970) 37.36 (43.33–22.53) 0.0186
Oral Cavity (Extended) 641.5 (765.6–545.0) 487.3 (602.0–393.9) 354.7 (418.5–317.5) 375.6 (421.8–354.4) <0.001
Parotid Left 316.3 (388.8–293.3) 193.2 (267.5–174.6) 192.4 (218.8–151.3) 211.0 (238.1–186.8) <0.001
Parotid Right 336.8 (393.7–299.3) 196.4 (251.1–169.3) 183.3 (196.8–159.5) 215.1 (240.8–168.6) <0.001
Pharyngeal Constrictor Muscles 469.9 (512.5–427.6) 340.6 (521.5–290.6) 293.8 (315.5–238.7) 314.1 (326.3–262.7) <0.001
Spinal Cord 299.1 (346.3–270.3) 205.8 (237.9–188.0) 173.1 (181.8–167.3) 200.5 (212.3–173.5) <0.001
Submandibular Left 135.24 (148.79–113.25) 84.91 (99.73 - 79.09 (82.81–66.99) 79.21 (89.47–72.46) <0.001
Submandibular Right 131.51 (149.42–115.29) 90.04 (111.44–77.65) 81.19 (86.56–72.92) 79.12 (91.42–73.05) <0.001
Supraglottic Larynx 257.9 (300.2–231.2) 207.9 (285.9–161.0) 134.07 (167.39–97.80) 158.98 (175.80–128.82) <0.001
Thyroid 236.10 (328.87–184.63) 203.41 (260.67–149.96) 161.36 (196.91–132.85) 189.9 (218.4–167.7) 0.00516

Table 8
Patient Demographic Data per Site.

Site Age Sex Contrast

Yonsei 56 M Y
67 M Y
68 M Y
56 M Y
33 M Y
48 M Y
35 F Y
74 M Y
62 M Y
54 M Y
58 M Y
48 M Y
43 M Y
47 M Y
49 M Y
65 M Y
53 M Y
51 M Y
70 F Y
42 M Y

Shantou 60 M N
46 M Y
40 F Y
45 F Y
38 M Y
70 M Y
56 M N
67 M Y
66 M Y
67 F Y
23 M Y
30 M Y
63 M Y
51 F Y
81 M Y
58 M Y
60 F Y
63 M Y
74 M Y
50 M Y

Groningen 72 F Y
80 M N
61 M N
76 M N
78 F N
54 M N
67 M N
94 F N

Table 8 (continued)

Site Age Sex Contrast

62 M N
74 F N
56 M N
77 M N
89 F N
84 M N
74 M Y
66 M Y
67 M Y
70 M Y
71 F Y
57 M Y

Maastro 66 M Y
66 M Y
59 F Y
74 M N
57 M Y
73 F Y
86 M Y
80 F Y
76 M Y
71 M Y
73 F N
66 F Y
73 M Y
62 M Y
72 F Y
64 M Y
69 F Y
69 M Y
91 M N
72 M N

Summary Mean (63)Median
(66)

M (61)F (20)n/a
(2)

Contrast (61)Non-
Contrast (24)

NB 1: Data was anonymized according to local patient data privacy regulations.
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most noticeable difference in the box plots of DSC. Prior to Bonfer-
roni correction, statistically significant differences between the
groups were found for at least on measure for all organs except
the Cricopharyngeal Inlet. Following Bonferroni correction, statisti-
cally significant differences continued to be observed for only; BM
L&R for DSC, PCM for DSC, and Submandibular R for DSC and NAPL.
Results for these organs will be expanded below. All quantitative
results are given in Tables 4–6 in the Supplementary Material.

The Kruskal-Wallis test of the Pharyngeal Constrictor Muscle
showed statistical differences for the PCM (p < 0.05) for all quanti-



Fig. 3. Boxplot showing significant difference between clinics for DSC scores of Pharyngeal Constrictor Muscles.

Risk of population bias in deep learning autocontouring
tative measures prior to Bonferroni correction. After correction
(p < 0.00104), the statistical significance remained for DSC. A
post-hoc Dunn test showed a statistical difference between the
European clinics (Groningen and Maastro) and the Asian clinics
(Shantou and Yonsei), visualized in Fig. 3, indicating the differences
between the European and Asian grouped clinics.

The Buccal Mucosae DSC scores for both left and right BM were
found have a significant difference between clinics. A Dunn test
showed differences between both European clinics (Groningen
and Maastro) and Yonsei, as seen in Fig. 4. HD2D95 and NAPL
showed no observed differences.
Fig. 4. Boxplots showing significance and relationship

8

The quantitative measures showed significant differences
between the groups for Submandibular Right for all measures prior
to Bonferroni correction, and for DSC and NAPL post-correction.
However, no significant differences were found for the left side.
The Dunn test on the DSC scores indicated the results from both
Groningen and Maastro differed to those from Shantou. An addi-
tional difference was found between Maastro and Yonsei for NAPL.
There is a significant difference between the European grouped
clinics and Shantou, as seen in Fig. 5.

Quantitative evaluation of organs reference volume and length
showed anatomical variations between the Asian and European
population (Figs. 9 and 10).
between clinics for DSC of both Buccal Mucosae.



Fig. 5. Boxplots showing significance and relationship between clinics for DSC for the Submandibular Left and Submandibular Right.
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In the qualitative assessment, no clear trend was seen when
observing results for the blinded acceptance test by Patient Origin,
shown in the plots in the panel ‘A’ of Fig. 6 . The rates of clinical
acceptance were comparable across all structures for the manual
contours, with minor variation in acceptance for BM Right, as seen
in lower panel ‘A’. Rates of clinical acceptance of the DLC contours
did not mirror to the rates seen for the GT. However, there was no
clear trend, as seen in the top row of panel ‘A’. For example, accep-
tance was highest for the left parotid in the Korean patient group
and lowest in the Chinese patient group, but this trend is reversed
for the PCM.

Similarly, there was no clear trend amongst observers across
the ground truth data grouped according to Observer Origin, in
panel ‘B’ of Fig. 6. Largely, all observers have similar rates of clinical
acceptance of the manual contours, regardless of observer origin.
This is shown in lower panel ‘B’ of Fig. 6. Generally, the level of
acceptance was lower for the DLC contours, except for the Mand-
ible. However, there is a marked difference in how much the con-
tours are considered clinically acceptable according to observer
origin. Observers from South Korea accepted the DLC contours at
similar rates to the manual contours. Except for the glottic larynx,
which the Chinese and Dutch observers were more critical of the
DLC contours, other than the Mandible. This can be seen in the
acceptance of DL plots in lower panel ‘B’ of Fig. 6.
Discussion

This study sought to investigate whether racial/demographic
bias in auto-contouring exists for a model training in a single insti-
tution, and what the impact of any bias might be.

Quantitative evaluation of organ volume revealed statistical dif-
ferences between the Asian and European population for several
organs. These anatomical variations between populations may
explain the observed differences in the quantitative measures of
autocontouring performance for some organs. For the BM, differ-
ences were observed, with the European patient population having
larger volumes, and higher DSC. It is known that DSC correlates
with organ volume [37] and this difference may not reflect a differ-
ence in performance but rather a difference in the organ volume.
As for the Mandible, there was a significant volume difference
between the Asian and European population, with the former hav-
ing larger volumes. However, statistical differences were not
observed for any measure of contouring performance. This may
9

be attributed to the Mandibles high contrast, which consistently
performs well with DLC. Differences found between the Asian
and European population for volume, were shared for organ length.
Measures concerned with length, NAPL and HD2595, revealed pop-
ulation differences for many organs prior to Bonferroni correction.

There were two organs for which quantitative performance
measure differences were observed but population (organ volume)
differences were not. The Submandibular R is perhaps the most
interesting of these, since the results were not mirrored in the left
side. In this case, outliers with poor performance appears to skew
the Shantou and Maastro results, respectively. This highlights the
challenge of performing such analysis with small sample sizes.
Therefore, it appears that there is limited bias overall in the quan-
titative performance of the DLC for the various populations.

While helpful, quantitative metrics alone are not sufficient to
determine clinical acceptability, and a qualitative test was required
to evaluate the contours in a manner that closely simulates clinical
practice [36]. Overall, the qualitative data supports the assumption
that DLC is not biased to patient origin, since there is no trend for
accepting contours from one population more than another. How-
ever, there appears to be a bias in the perception of the clinical
acceptance of DL contours between observers from different ori-
gins. While the acceptance of manual contours was consistent
between observers, there was a strong difference in acceptance
with the European clinics being more critical and the Korean clinic
being more accepting of the DL contours. Though this study is
insufficient to determine the cause of this bias, we can speculate
that clinical workload, familiarity with advanced technologies,
training and experience as possible factors that may contribute
to the bias seen. Nevertheless, this study shows that focus is
required to understand why there are differences in perception
and how it may be better aligned amongst observers. Much like
the differences seen in interobserver variation studies for delin-
eation, the same phenomenon may be shared when assessing con-
tours [11,27].

There is growing awareness that AI solutions could amplify
racial bias and healthcare disparities [38–39]. A report commis-
sioned by NHS Race and Health Observatory [40] found that
research studies using clinical data, often did not include race data.
Within diagnostic and therapeutic medical imaging, this may not
routinely be recorded as it is assumed that medical imaging tasks
are race agnostic [41]. As such, it is unclear if the patients in the
population are equitably served.



Fig. 6. Results from blinded acceptance test reviewing manual and DLC contours. Bar graphs show clinical acceptance, grouped per Organ and Clinic and by either Patient or
Observer Origin.

Risk of population bias in deep learning autocontouring
Race is considered a protected attribute and is classed as special
category data [42]protected under the Equality Act. The first step in
representing relevant population data to build these models, is to
first document patient race actively. However, protected attribute
data is unlikely to be available to an AI model developer – a chal-
lenge that must be overcome if the risk of bias in AI is to be
mitigated.

The generalisation of the results is limited as only one model
with specific parameters was studied and other models may exhi-
10
bit greater or different biases. While further investigation is
required, this study provides some encouragement that autocon-
touring appears robust to demographic. Independent testing with
a coordinated effort to collect data that represents many geo-
graphic populations, is needed. It is not enough to report the diver-
sity of the training data used to develop a deep learning model,
without evaluating the resulting generalisation of the model to a
diverse population.



Fig. 7. Normalized Added Path Length (with 1 mm acceptable tolerance) for each organ and patient origin.

Fig. 8. 2D 95% Hausdorff Distance per organ and patient origin.
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Fig. 9. All Organs Reference Volume (cm3).

Fig. 10. All Organs Reference Length (cm).

Risk of population bias in deep learning autocontouring
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Limitations

While this study sought to investigate whether racial/demo-
graphic bias in auto-contouring exists, todo so is challenging for sev-
eral reasons; racial informationwas not recorded and clinic location
had to be used as a surrogate, variations in clinical contouring guide-
lines, and quantitative metrics do not necessarily reflect clinical
impact. Acquisition parameters were similar, but CT scanners dif-
fered (Table 2, Supplementary Material) making it a potential con-
founder. Sample size of this study is also a significant limitation of
this study. However, it was decided to use a single observer recon-
touring all cases to mitigate contouring style as a confounder, mak-
ing a larger sample size difficult to achieve. Further research of this
nature should be conductedwith larger sample sizes, other anatom-
ical regions and possibly exploring further territories.
Conclusion

The deep learning autocontouring model for radiotherapy
showed some organs with statistically significant differences in
quantitative scores across geographic populations. However, some
of these apparent quantitative differences in performance may be
attributed to the choice of metric. The results of the qualitative
evaluation showed that no bias was found regarding patient origin,
rather that there was an observed difference in the perceived
acceptance of deep learning autocontours amongst the observers.
Further research should be undertaken to understand geographic
biases extending into other anatomies and geographies. In addi-
tion, those developing autocontouring models should be mindful
that training populations should reflect the treatment population.
The implementation of independent testing on a diverse dataset
would be a starting point towards improving generalisability and
data diversity.
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