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Background and purpose: Current models for the prediction of late patient-rated moderate-to-severe
xerostomia (XER12m) and sticky saliva (STIC12m) after radiotherapy are based on dose-volume parameters
and baseline xerostomia (XERbase) or sticky saliva (STICbase) scores. The purpose is to improve prediction
of XER12m and STIC12m with patient-specific characteristics, based on CT image biomarkers (IBMs).
Methods: Planning CT-scans and patient-rated outcome measures were prospectively collected for 249
head and neck cancer patients treated with definitive radiotherapy with or without systemic treatment.
The potential IBMs represent geometric, CT intensity and textural characteristics of the parotid and sub-
mandibular glands. Lasso regularisation was used to create multivariable logistic regression models,
which were internally validated by bootstrapping.
Results: The prediction of XER12m could be improved significantly by adding the IBM ‘‘Short Run
Emphasis” (SRE), which quantifies heterogeneity of parotid tissue, to a model with mean contra-lateral
parotid gland dose and XERbase. For STIC12m, the IBM maximum CT intensity of the submandibular gland
was selected in addition to STICbase and mean dose to submandibular glands.
Conclusion: Prediction of XER12m and STIC12m was improved by including IBMs representing heterogene-
ity and density of the salivary glands, respectively. These IBMs could guide additional research to the
patient-specific response of healthy tissue to radiation dose.
� 2016 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 122 (2017) 185–191
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
The survival of head and neck cancer (HNC) patients has
improved remarkably in the last decade with the addition of sys-
temic agents, including concurrent chemotherapy and cetuximab
[1,2]. However, these treatment strategies have significantly
increased acute and late toxicity [3]. Consequently, reducing
treatment-induced side effects has become increasingly important.
Despite the clinical introduction of more advanced radiation tech-
niques, side effects related to hyposalivation, such as xerostomia
and sticky saliva, are still frequently reported following radiother-
apy (RT) for HNC. Accurate prediction of these side effects is impor-
tant in order to individually tailor treatments to patients.

To predict moderate-to-severe xerostomia and sticky saliva,
Normal Tissue Complication Probability (NTCP) models have been
developed [4,5]. Current models are based on a combination of
dose–volume parameters of salivary glands and baseline risk fac-
tors. However, these models cannot completely explain the varia-
tion in development of xerostomia between individuals.
Therefore, identification of additional factors is needed to explain
the patient-specific response to dose, and subsequently to optimise
NTCP models.

In current clinical practice, three-dimensional anatomic infor-
mation is acquired with planning CT scans for all patients receiving
RT. These scans are used to delineate the target and organs at risk,
and to calculate the dose distribution of the planned treatment.
These scans yield reproducible information about patient-specific
anatomy and tissue composition, and could therefore contribute
to the understanding and prediction of the development of side
effects in HNC patients.

Information about the structure, shape and composition of
organs at risk from the CT can be quantified with image features.
Features that correlate with treatment outcome or complications
can be used as so called image biomarkers (IBMs). Extracted from
CT data of the parotid (PG) and submandibular glands (SG), the dif-
ferent image features represent their CT intensity as well as geo-
metric and textural characteristics.

Aerts et al. [6] investigated the relationship between CT IBMs of
head and neck tumours and survival. Furthermore, the relationship
between geometric changes of organs at risk after RT, and radiation

http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2016.07.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.radonc.2016.07.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:l.v.van.dijk@umcg.nl
http://dx.doi.org/10.1016/j.radonc.2016.07.007
http://www.sciencedirect.com/science/journal/01678140
http://www.thegreenjournal.com
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induced complications, has been described in several studies
[7–10]. Scalco et al. [11] investigated change after RT for a selected
set of textural parameters. However, there are no studies so far
that report on the relationship between IBMs of organs at risk
before treatment and the risk of complications.

The aim of this study, therefore, was to investigate the predic-
tion of xerostomia and sticky saliva, as assessed at 12 months after
radiotherapy. The objective was to improve predictions by the
addition of IBMs of the parotid and submandibular glands, deter-
mined from the planning CT-scans, to models that contain clinical
and dosimetric information.
Method

Patient demographics and treatment

The study population of HNC patients was treated with defini-
tive radiotherapy either in combination or not with concurrent
chemotherapy or cetuximab, between July 2007 and August
2014. Patients with tumours in the salivary glands, those with
excised parotid or submandibular glands and/or patients that
underwent surgery in the head and neck area were excluded from
this study. Furthermore, patients with metal streaking artifacts in
the CT were excluded, due to the influence of CT intensity values
that do not correspond to tissue densities. Moreover, patients
without follow-up data 12 months after RT were also excluded.
Patient characteristics are depicted in Table 1.
Table 1
Patient characteristics.

Characteristics N = 249 %

Sex
Female 61 24
Male 188 76

Age
18–65 years 133 53
>65 years 116 47

Tumour site
Oropharynx 74 30
Nasopharynx 14 6
Hypopharynx 31 12
Larynx 118 47
Oral cavity 11 4
Unknown primary 1 0

Tumour classification
T0 3 1
T1 27 11
T2 81 33
T3 77 31
T4 61 24

Node classification
N0 115 46
N1 23 9
N2abc 104 42
N3 7 3

Systemic treatment
Yes 100 40
No 149 60

Treatment technique
3D-CRT 23 9
ST-IMRT 92 37
SW-IMRT 124 50
SW-VMAT 10 4

Bi-lateral
Yes 203 82
No 46 18

Abbreviations: CRT: Conformal Radiation Therapy; IMRT: Intensity-Modulated
Radiation Therapy; ST-IMRT: standard parotid sparing IMRT; SW-IMRT: swallowing
sparing IMRT; SW-VMAT: swallowing sparing Volumetric Arc Therapy.
For each patient, a planning CT (Somatom Sensation Open, Sie-
mens, Forchheim, Germany, voxel size: 0.94 � 0.94 � 2.0 mm3;
100–140 kV) with contrast enhancement was acquired. This CT
was used for contouring and RT planning. The parotid and sub-
mandibular glands were delineated according to guidelines as
described by Brouwer et al. [12].

Most patients were treated with standard parotid sparing IMRT
(ST-IMRT) or swallowing sparing IMRT (SW-IMRT) [13,14]. All
IMRT and VMAT treatments included a simultaneous integrated
boost (SIB) and attempted to spare the parotid glands and/or the
swallowing structures without compromising the dose to the tar-
get volumes [15]. The tumour and, if present, pathological lymph
node target volumes, received a total dose of 70 Gy (2 Gy per frac-
tion). Most patients received an elective radiation dose of 54.25 Gy
(1.55 Gy per fraction) on the lymph node levels that were delin-
eated as described by Gregoire et al. [16]. Radiation protocols were
similar to those described by Christianen et al. [17].
Endpoints

The EORTC QLQ-H&N35 questionnaire was used to evaluate
patient-rated xerostomia and sticky saliva before and after RT. This
questionnaire is part of a standard follow-up programme (SFP), as
described in previous reports [4,18,19], and uses a 4-point Likert
scale that describes the condition as ‘none’, ‘a bit’, ‘quite a bit’
and ‘a lot’. All patients included were subjected to the SFP pro-
gramme, where toxicity and quality of life were evaluated prospec-
tively on a routine basis; before, during and after treatment.

The endpoints of this study are moderate-to-severe xerostomia
(XER12m) and sticky saliva (STIC12m) 12 month after RT. This corre-
sponds to the 2 highest scores on the 4-point Likert scale.
Potential CT image biomarkers, dose and clinical parameters

Dose and clinical parameters
The planning CT, dose distribution and delineated structures

were analysed in Matlab (version R2014a). The mean dose to both
the contra- and bi-lateral parotid and submandibular glands was
determined, since previous studies have shown that those were
the most important parameters in the prediction of patient-rated
xerostomia and sticky saliva at 6 and 12 months after RT [4,5,20].

Furthermore, different patient characteristics (age, sex, WHO-
stage, weight, length and Body Mass Index), tumour characteristics
(TNM stage, tumour location) and treatment characteristics
(treatment technique and the use of systemic treatment) were
also included. In addition, the patient-rated xerostomia and sticky
saliva at baseline were taken into account.
CT intensity and geometric image biomarkers
Patient-specific characteristics of the parotid and submandibu-

lar glands were quantified by extracting potential CT IBMs, repre-
senting geometric, CT-intensity and pattern characteristics. In
Fig. 1, extraction of different types of IBMs is explained schemati-
cally. The in–house developed software that was used to extract
the IBMs was based on commonly used formulas (Supplementary
data 1 and 2) and implemented in Matlab (version R2014a). The
CT intensity IBMs (number = 24) were derived from the CT inten-
sity information of the delineated volumes of interest. Examples
of these features are mean, variance, minimum, maximum, quan-
tiles, energy and skewness of CT intensity. The geometric IBMs
(number = 20), such as volume, sphericity, compactness and major
and minor axis length, were directly derived from the delineated
structures.



Fig. 1. Examples of the image biomarker (IBM) extraction process. The delineated gland of interest is extracted from the CT image (I). CT intensity IBMs are obtained from all
voxels inside the contour (II). Geometric IBMs are derived from the delineation of the gland directly (III). A small sample of the CT where voxel intensity values are binned (IV).
In this example, a GLRLM matrix is constructed from this CT data by quantifying the number of repetitions of grey intensities from left to right (V).
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Textural image biomarkers
More complex CT IBMs are defined to describe the heterogene-

ity of tissue. These textural IBMs (number = 86) were derived from
the grey level co-occurrence matrix (GLCM) [21], grey level run-
length matrix (GLRLM) [22] and grey level size-zone matrix
(GLSZM) [23]. To extract this, the CT intensities were binned from
�200 to 200 Hounsfield Units (HU) with an interval of 25 HU. All
textural features were normalised by subtracting the IBM values
from their mean and dividing by the standard deviation. For more
information on textural IBM extraction, refer to Supplementary
data 2 and Aerts et al. [6]. Ultimately, all potential CT IBMs and
clinical and dosimetric parameters together resulted in 142
variables.
Pre-selection of variables and univariable analysis

A large number of potential variables can increase the risk of
false positives, overfitting the model and of multicollinearity
[24,25]. In this study, a method for pre-selecting variables was
applied to reduce the probability of these adverse effects. First,
the (Pearson) correlation was determined between all combina-
tions of variables. If a correlation larger than 0.80 was observed,
then the variable with the lowest univariable correlation with
the endpoint was omitted. After pre-selection, univariable analysis
of the pre-selected variables was performed.
Multivariable analysis and model performance

Lasso regularisation was used to create two multivariable logis-
tic regression models to predict moderate-to-severe XER12m and
STIC12m. All pre-selected variables were introduced to the
modelling process. By increasing the penalisation term lambda,
the regularisation shrinks the coefficients of the variables and
thereby excludes variables by reducing them to zero. To robustly
determine the optimal lambda that results in a model that best fits
the observed data, 10-fold cross validation was used [26]. This was
repeated 100 times, as these folds are randomly picked [26].

In general, lasso tends to select models with too many variables
[27]. Therefore, the 75th quartile (not the average) of the 100
obtained optimal lambdas was used to select the variables [28].
Subsequently, the variables selected by lasso were again fitted to
the data with logistic regression and internally validated through
bootstrapping. This validation corrects for optimism by shrinking
the model (slope and intercept) and the model performance
accordingly [25,29].

Reference models without IBMs were created and the contribu-
tion of IBMs to the models was tested with the Likelihood-ratio
test. The model’s performance was quantified in terms of discrim-
ination with the Area Under the Curve of the ROC curve (AUC), the
Nagelkerke R2 and the discrimination slope. The Hosmer–Leme-
show test evaluated the calibration. Variance Inflation Factor
(VIF) was used to evaluate the correlation of a variable with all
others in the model [30]. The R-packages Lasso and Elastic-Net
Regularized Generalized Linear Models (version 2.0–2) [26] and
Regression Modeling Strategies (version 4.3–1) [31] were used.

Impact of variation in delineation

Delineation of organs at risk in the head and neck region by dif-
ferent observers may be subject to inter-observer variability [32],
which could result in a variation in IBM values. To evaluate this,
four additional delineations per gland per patient were created
by eroding the original delineation by magnitudes corresponding
to the variations in delineation reported by Brouwer et al. [32].
The IBM stability was evaluated combining the intra-class correla-
tion of the IBM values of the original and created delineations. An
IBM with an intra-class correlation higher than 0.70 was consid-
ered relatively stable (1.0 indicates identical observations). For
more details, refer to Supplementary data 3.
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Results

Patients

After exclusion of patients with metal artefacts in the CT-scans,
424 of the 629 patients (67%) were included. Of the remaining
patients, 249 (39%) completed the EORTC QLQ-HN35 at 12 months
after treatment and were included in the analysis. Moderate-to-
severe xerostomia was reported in 40% (100) and sticky saliva in
25% (63) of these patients.
Pre-selecting variables and univariable analysis

After testing of inter-variable correlation (Pearson), a selection
of 26 of 142 variables for XER12m and 24 of 142 variables for
STIC12m were pre-selected. Univariable analysis of the pre-
selected variables showed that 8 and 6 variables were significantly
correlated to XER12m and STIC12m, respectively (p-value < 0.05)
(Table 2). However, all pre-selected variables were used in the
lasso regularisation process. These pre-selected variables are listed
in the Supplementary data 4.
Multivariable analysis and model performance

For Xer12m, the variables selected by the lasso modelling pro-
cess were mean dose to the contra-lateral parotid gland, baseline
xerostomia and the image biomarker ‘‘Short Run Emphasis”
(SRE). The SRE significantly improved the model in terms of overall
and discrimination performance (Likelihood Ratio test: p = 0.01).
The AUC increased from 0.75 (0.69–0.81) to 0.77 (0.71–0.82) and
the discrimination slope from 0.19 to 0.21.
Table 2
Univariable analysis after pre-selection of parotid gland (left) and submandibular gland (r

Xerostomia at 12 months after RT S

Name Type p-Value b OR (95% CI) N

Mean dose contra (PG) DVH <0.001 0.06 1.06 (1.04–1.09) B
Baseline xerostomia Clinical <0.001 0.80 2.22 (1.49–3.30) M
Short Run Emphasis GLRLM 0.002 0.44 1.55 (1.18–2.03) M
97.5 percentile CT intensity 0.004 0.39 1.47 (1.13–1.92) 9
Long Run Emphasis GLRLM 0.014 �0.50 0.61 (0.41–0.90) S
Short Run High Gray Emphasis GLRLM 0.014 �17.14 0.00 (0.00–0.03) S
Tumour stage Clinical 0.039 0.26 1.29 (1.01–1.65)
Volume of bounding box Geometric 0.046 �0.27 0.76 (0.59–0.99)

Abbreviations: PG: parotid gland; SGs: sumandibular glands; OR: odds ratio; CI: confide

Table 3
Estimated coefficients (uncorrected and corrected for optimism) of NTCP models with and

Model without IBM

b OR (95% CI) p-Value

Uncorrected Corrected

Xerostomia
Intercept �3.30 �3.26
Contra dose (PG) 0.062 0.062 1.06 (1.04–1.09) <0.001
XER baseline 0.80 0.79 2.23 (1.46–3.41) <0.001
SRE GLRLM (PG) – – – –

Sticky saliva
Intercept �4.29 �4.24
Mean dose (SGs) 0.034 0.033 1.03 (1.01–1.06) 0.004
STIC baseline 0.86 0.85 2.37 (1.57–3.57) <0.001
Max HU (SG) – – – –

Abbreviations: Max: maximum; XER: xerostomia; STIC: sticky saliva; PG: parotid gland;
biomarkers; CI: confidence interval.

* Based on unnormalised values.
For STIC12m, the mean dose of both submandibular glands, base-
line sticky saliva, the maximum CT intensity and Short Run High
Gray Emphasis (SRHGE) were selected. The maximum CT intensity
added significantly to the model (Likelihood Ratio test, p = 0.005).
However, the SRHGE did not improve the model performance sig-
nificantly (Likelihood-ratio test, p = 0.12) and had negligible effect
on the AUC. Therefore, the variable SRHGE was discarded from fur-
ther analysis and only the maximum intensity was used. Adding
this IBM to the mean dose and baseline sticky saliva based model
improved the discrimination slope of the model (from 0.15 to
0.18) and the AUC (from 0.74 (0.67–0.80) to 0.77 (0.71–0.83), from
0.73 to 0.76 when tested in bootstrapped data). Resulting (cor-
rected) coefficients and performance measures of the models are
depicted in Tables 3 and 4, respectively. For the formulas of the
final models refer to Supplementary data 5.

The Hosmer–Lemeshow test showed that calibration was satis-
factory for all models (Table 4), indicating a good agreement
between the predicted and observed patient outcomes. Addition-
ally, the variance inflation factor (VIF) of all selected variables
was <1.03, indicating low correlation.
Impact of variation in delineation

For all 249 patients, 4 extra delineations were created of both
the contra-lateral parotid and submandibular gland. IBMs were
extracted from all delineations. Their robustness was determined
with the intra-class correlation (>0.70). For the parotid gland, 92
of all 130 IBMs (71%) were robust. For the submandibular gland,
73 IBMs (56%) were robust. The intra-class correlation of the SRE
(IBM in final model Xer12m) was 0.85 (95% CI; 0.82–0.87), indicat-
ing that this IBM was relatively robust for contour variations. The
ight) related variables for xerostomia and sticky saliva, respectively.

ticky saliva at 12 months after RT

ame Type b p-Value OR (95% CI)

aseline sticky saliva Clinical 0.99 <0.001 2.70 (1.81–4.03)
ean dose (SGs) DVH 0.04 <0.001 1.04 (1.02–1.06)
aximum CT intensity 0.01 0.001 1.01 (1.00–1.01)
7.5 percentile CT intensity 0.02 0.008 1.02 (1.00–1.03)
quared homogeneity GLCM �0.33 0.027 0.72 (0.54–0.96)
hort Run High Gray Emphasis GLRLM �0.58 0.032 0.56 (0.33–0.95)

nce interval.

without IBMs.

Model with IBM

b OR (95% CI) p-Value Average (SD)

Uncorrected Corrected

�3.31 �3.18
0.061 0.059 1.06 (1.04–1.09) <0.001 25.54 (14.38)
0.81 0.77 2.24 (1.45–3.45) <0.001 1.51 (0.68)
0.40 0.38 1.49 (1.09–2.02) 0.011 0.77* (0.028)

�4.49 �4.29
0.035 0.033 1.04 (1.01–1.06) 0.005 51.09 (21.34)
0.91 0.86 2.47 (1.63–3.77) <0.001 1.47 (0.72)
0.0077 0.0073 1.01 (1.00–1.01) 0.002 177.31 (65.94)

SGs: sumandibular glands; SRE: Short Run Emphasis; OR: odds ratio; IBM: image



Table 4
Performance of NTCP models with and without IBMs.

Xerostomia Sticky saliva

Model without IBM Model with IBM Model without IBM Model with IBM
Model 1 Model 2 Model 3 Model 4

Overall �2LL 283 276 244 234
R2 0.26 0.29 0.21 0.26

Discrimination AUC 0.75 (0.69–0.81) 0.77 (0.71–0.82) 0.74 (0.67–0.80) 0.77 (0.71–0.83)
DS 0.19 0.21 0.15 0.18

Calibration HL X2 8.31 10.98 9.51 5.87
HL p-value 0.40 0.20 0.30 0.66

Validation AUC boot 0.74 0.76 0.73 0.76
R2 boot 0.25 0.27 0.20 0.24

Abbreviations: �2LL: �2 log-likelihood; R2: Nagelkerke R2; AUC: Area Under the Curve of the ROC; DS: discrimination slope; HL: Hosmer–Lemeshow; Boot: corrected for
optimism with bootstrapping; IBM: Image Biomarker.
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maximum intensity of the submandibular gland (IBM in final
model STIC12m) was more sensitive for contour variation with an
ICC of 0.70 (95% CI; 0.66–0.75).
Discussion

The results of this study showed that prediction of XER12m and
STIC12m could be significantly improved by adding the IBMs Short
Run Emphasis (SRE) of the parotid gland and maximum CT inten-
sity of the submandibular gland to the reference models based
on dose–volume parameters and baseline factors. The improve-
ments of both models with IBMs persisted when internally vali-
dated with both lasso regularisation and bootstrapping. These
models with IBMs are a first step to understanding the patient-
specific response of healthy tissue to dose. This could contribute
Fig. 2. Examples of patients with high (A and B) and low (C and D) Short Run Emphasis v
(F) maximum CT intensity value.
to a better prediction of side effects and selection of patients, based
on these predictions for advanced treatment techniques, as pro-
posed by Langendijk et al. with the model-based approach to select
patients for proton therapy [33].
Short Run Emphasis (SRE) and xerostomia

The SRE obtained from the GLRLM matrix, was associated with
the development of XER12m. This IBM is related to the occurrence of
short lengths of similar CT intensity value repetitions within the
contour. High SRE values indicate heterogeneous parotid tissue
or, in other words, that the parotid gland parenchyma is irregular
in these patients. Visual investigation of the parotid glands of sev-
eral patients with high and low SRE suggested that this irregularity
resulted from fat saturation of parotid glands (Fig. 2A–D). The
alues of the parotid gland. Examples of submandibular glands with high (E) and low
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relationship between fat saturation and impaired parotid function
has been shown by Izumi et al. [34] for patients with xerostomia
related diseases: Sjögren’s syndrome and hyperlipidemia. Appar-
ently, the ratio between fatty tissue and functional parotid par-
enchyma tissue is related to parotid function. Our results suggest
that patients with a larger ratio of fat to parotid parenchyma tissue
in the parotid glands have a larger risk of developing radiation-
induced xerostomia. Our results suggest that patient-specific risk
of developing radiation-induced xerostomia can be quantified by
IBMs, a first step to explaining the patient-specific response in
developing xerostomia to dose. However, CT is not the most
optimal image modality to differentiate fat and gland parenchyma.
Since MRI is superior in differentiating fat and gland tissue, evalu-
ating parotid glands prior to treatment using MRI images could
provide better information for predicting XER12m [35].

Some studies have found a relationship between the initial size
of the parotid gland and function prior to [34] and after RT [10,36].
We could not reproduce this in our population. Only a univariable
significant association was found between the volume of the sur-
rounding bounding box of the parotid gland and XER12m.
Maximum intensity and sticky saliva

Our multivariable analysis showed that the maximum CT inten-
sity value of the submandibular gland was associated with STIC12m.
This maximum CT intensity was related to intra-vascular contrast
in the artery or vein supplying the submandibular gland (Fig. 2E
and F). There are no studies reported that support our finding that
there is a relationship between vascularisation of the submandibu-
lar gland and the development of sticky saliva. Both lasso and
internal bootstrapped validation showed robust improvement of
prediction with the maximum intensity. However, this IBM was
not very stable for the inter-observer variation in delineations of
the submandibular glands. Since the blood vessels supplying the
submandibular gland can be located at the border of the gland,
they are not always delineated, resulting in this marginal stability.
Additionally, we expect that the timing of, or the absence of intra-
venous contrast admitted during acquisition will have a big impact
on this IBM. This IBM seems, therefore, suboptimal and further
research is necessary to investigate whether there is an underlying
mechanism. For example, higher perfusion could relate to higher
oxidation of the submandibular gland, thus increasing the
radio-sensitivity. Furthermore, the significant improvement of
the prediction of STIC12m by the maximum CT intensity of the
submandibular gland should be tested in an external dataset.
Robustness of modeling

The risk of finding false positive associations and overfitting the
model were partly addressed by pre-selecting variables based on
their inter-correlation. Additionally, we performed alternative
multivariable analyses, including logistic regression with forward
and backward variable selection based on log-likelihood and the
Akaike information criterion (AIC), respectively. The dominating
factors selected by these analyses were the same as selected by
the lasso regularisation. The same was true if forward selection
was performed without pre-selection. Therefore, the selected vari-
ables were independent of the method of analysis. This suggests
the stability of the associations in this dataset are relatively high.
Furthermore, coefficients and performance measures of all models
were corrected for optimism by means of internal validation.
However, the model selection procedure was not included in the
internal validation, as this inhibited model comparison, and so
further external validation is warranted.
Clinical impact

In this study it was shown that the NTCP models based on dose
and baseline complaints were significantly improved with IBMs.
Nevertheless, the clinical impact of the model improvement in
terms of classification and performance remains limited at this
point in time. Yet we consider the current study important, as it
is an initial step to improve understanding of the patient-specific
response of healthy tissue to RT, hereby leading to better identifi-
cation of HNC patients at risk of developing side effects.

Conclusion

Prediction of xerostomia and sticky saliva 12 months after RT
was significantly improved by including CT characteristics of the
parotid and submandibular glands for our patient group. The CT
image biomarker that positively associated with higher probability
of developing xerostomia was ‘‘Short Run Emphasis”, which might
be a measure of non-functional fatty parotid tissue. The maximum
CT intensity in the submandibular glands was associated with
sticky saliva, and probably related with vascularisation. These
image biomarkers are a first step to identifying patient character-
istics that explain the patient-specific response of healthy tissue
to dose.
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