8,209 research outputs found

    Probability of Reflection by a Random Laser

    Get PDF
    A theory is presented (and supported by numerical simulations) for phase-coherent reflection of light by a disordered medium which either absorbs or amplifies radiation. The distribution of reflection eigenvalues is shown to be the Laguerre ensemble of random-matrix theory. The statistical fluctuations of the albedo (the ratio of reflected and incident power) are computed for arbitrary ratio of sample thickness, mean free path, and absorption or amplification length. On approaching the laser threshold all moments of the distribution of the albedo diverge. Its modal value remains finite, however, and acquires an anomalous dependence on the illuminated surface area.Comment: 8 pages (revtex), 3 figures, to appear in Phys.Rev.Let

    Weyl node with random vector potential

    Get PDF
    We study Weyl semimetals in the presence of generic disorder, consisting of a random vector potential as well as a random scalar potential. We derive renormalization group flow equations to second order in the disorder strength. These flow equations predict a disorder-induced phase transition between a pseudo-ballistic weak-disorder phase and a diffusive strong-disorder phase for sufficiently strong random scalar potential or for a pure three-component random vector potential. We verify these predictions using a numerical study of the density of states near the Weyl point and of quantum transport properties at the Weyl point. In contrast, for a pure single-component random vector potential the diffusive strong-disorder phase is absent.Comment: published version with minor change

    Time-delay matrix, midgap spectral peak, and thermopower of an Andreev billiard

    Get PDF
    We derive the statistics of the time-delay matrix (energy derivative of the scattering matrix) in an ensemble of superconducting quantum dots with chaotic scattering (Andreev billiards), coupled ballistically to MM conducting modes (electron-hole modes in a normal metal or Majorana edge modes in a superconductor). As a first application we calculate the density of states ρ0\rho_0 at the Fermi level. The ensemble average ρ0=δ01M[max(0,M+2α/β)]1\langle\rho_0\rangle=\delta_0^{-1}M[\max(0,M+2\alpha/\beta)]^{-1} deviates from the bulk value 1/δ01/\delta_0 by an amount depending on the Altland-Zirnbauer symmetry indices α,β\alpha,\beta. The divergent average for M=1,2M=1,2 in symmetry class D (α=1\alpha=-1, β=1\beta=1) originates from the mid-gap spectral peak of a closed quantum dot, but now no longer depends on the presence or absence of a Majorana zero-mode. As a second application we calculate the probability distribution of the thermopower, contrasting the difference for paired and unpaired Majorana edge modes.Comment: 13 pages, 6 figure

    Rectification of displacement currents in an adiabatic electron pump

    Full text link
    Rectification of ac displacement currents generated by periodic variation of two independent gate voltages of a quantum dot can lead to a dc voltage linear in the frequency. The presence of this rectified displacement current could account for the magnetic field symmetry observed in a recent measurement on an adiabatic quantum electron pump by Switkes et al. [Science 283, 1905 (1999)].Comment: 2 pages, RevTeX; 1 figur

    Participatory Scenario Generation: Communicating Usability Issues in Product Design through User Involvement in Scenario Generation\ud

    Get PDF
    Scenarios have proven to be a valuable tool in evaluating and communicating usability issues in consumer product design. Scenarios are explicit descriptions of hypothetical use situations. Realistic scenarios can serve as a valuable frame of reference to evaluate design solutions with regard to usability. To be able to achieve this required level of realism, involving users in scenario generation is essential. In this presentation we discuss how and where users can be involved in a scenario based product design process by means of examples of design projects that were executed by master students Industrial Design Engineering of the University of Twente. \ud \ud We distinguish direct and indirect scenario generation. In direct scenario generation the user is actively involved in a participatory scenario generation session: the scenarios are created together with users. Indirect scenario generation is an approach in which scenarios are created by designers based on common analysis techniques like observations and interviews. These scenarios are then offered to users for confirmation. Both types of user involvement in scenario generation can be aimed at either current use scenarios which describe the current situation or future use scenarios which include a new product design. \ud \ud The examples show that all strategies can be applied successfully to create realistic scenarios. Which strategy to choose depends among others upon risks and privacy issues, occurrence of infrequent events and availability of users. Furthermore, the variety of approaches shows that there is still a lot to explore with regard to benefits and limitations of the many techniques that can be applied in generating scenarios for consumer product design. We hope to contribute to this field by means of the research in our group and the work of students in the SBPD course\u
    corecore