93 research outputs found

    Identification of Nonlinear Systems Structured by Wiener-Hammerstein Model

    Get PDF
    Wiener-Hammerstein systems consist of a series connection including a nonlinear static element sandwiched with two linear subsystems. The problem of identifying Wiener-Hammerstein models is addressed in the presence of hard nonlinearity and two linear subsystems of structure entirely unknown (asymptotically stable). Furthermore, the static nonlinearity is not required to be invertible. Given the system nonparametric nature, the identification problem is presently dealt with by developing a two-stage frequency identification method, involving simple inputs

    Single photon quantum cryptography

    Full text link
    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 9500 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.Comment: 4 pages, 3 figure

    Room temperature stable single-photon source

    Full text link
    We report on the realization of a stable solid state room temperature source for single photons. It is based on the fluorescence of a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. Antibunching has been observed in the fluorescence light under both continuous and pulsed excitation. Our source delivers 2*10^4 single-photon pulses per second at an excitation repetition rate of 10 MHz. The number of two-photon pulses is reduced by a factor of five compared to strongly attenuated coherent sources.Comment: 7 pages, 10 figures, accepted to the special issue of the European Physical Journal D on "Quantum interference and cryptographic keys: novel physics and advancing technologies", proceedings of the conference QUICK 200

    Homodyne estimation of Gaussian quantum discord

    Get PDF
    We address the experimental estimation of Gaussian quantum discord for two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis which provides nearly optimal estimation for small value of discord. Besides, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictacted by the quantum Cramer-Rao bound, is limited to about 10 dB.Comment: 5+3 pages, 3 figures, published versio

    Frequency identification of Wiener systems with Backlash operators using separable least squares estimators

    Get PDF
    This paper deals with the identification of Wiener models that involve backlash operators bordered by possibly noninvertible parametric lines. The latter are also allowed to cross each other making possible to account for general-shape static nonlinearities. The linear dynamic subsystem is not-necessarily parametric but is BIBO stable. A frequency identification method is developed that provides estimates of the nonlinear operator parameters as well as estimates of the linear subsystem frequency gain. The method involves standard and separable least squares estimators that all are shown to be consistent. Backlash operators and memoryless nonlinearities are handled within a unified framework.Preprin

    Experimental open air quantum key distribution with a single photon source

    Full text link
    We present a full implementation of a quantum key distribution (QKD) system with a single photon source, operating at night in open air. The single photon source at the heart of the functional and reliable setup relies on the pulsed excitation of a single nitrogen-vacancy color center in diamond nanocrystal. We tested the effect of attenuation on the polarized encoded photons for inferring longer distance performance of our system. For strong attenuation, the use of pure single photon states gives measurable advantage over systems relying on weak attenuated laser pulses. The results are in good agreement with theoretical models developed to assess QKD security

    Non-Gaussianity of quantum states: an experimental test on single-photon added coherent states

    Get PDF
    Non Gaussian states and processes are useful resources in quantum information with continuous variables. An experimentally accessible criterion has been proposed to measure the degree of non Gaussianity of quantum states, based on the conditional entropy of the state with a Gaussian reference. Here we adopt such criterion to characterise an important class of non classical states, single-photon added coherent states. Our studies demonstrate the reliability and sensitivity of this measure, and use it to quantify how detrimental is the role of experimental imperfections in our realisation

    On the distillation and purification of phase-diffused squeezed states

    Get PDF
    Recently it was discovered that non-Gaussian decoherence processes, such as phase-diffusion, can be counteracted by purification and distillation protocols that are solely built on Gaussian operations. Here, we make use of this experimentally highly accessible regime, and provide a detailed experimental and theoretical analysis of several strategies for purification/distillation protocols on phase-diffused squeezed states. Our results provide valuable information for the optimization of such protocols with respect to the choice of the trigger quadrature, the trigger threshold value and the probability of generating a distilled state
    • …
    corecore