413 research outputs found

    Antifreeze in the hot core of Orion - First detection of ethylene glycol in Orion-KL

    Full text link
    Comparison of their chemical compositions shows, to first order, a good agreement between the cometary and interstellar abundances. However, a complex O-bearing organic molecule, ethylene glycol (CH2_{2}OH)2_{2}, seems to depart from this correlation because it was not easily detected in the interstellar medium although it proved to be rather abundant with respect to other O-bearing species in comet Hale-Bopp. Ethylene glycol thus appears, together with the related molecules glycolaldehyde CH2_{2}OHCHO and ethanol CH3_{3}CH2_{2}OH, as a key species in the comparison of interstellar and cometary ices as well as in any discussion on the formation of cometary matter. We focus here on the analysis of ethylene glycol in the nearest and best studied hot core-like region, Orion-KL. We use ALMA interferometric data because high spatial resolution observations allow us to reduce the line confusion problem with respect to single-dish observations since different molecules are expected to exhibit different spatial distributions. Furthermore, a large spectral bandwidth is needed because many individual transitions are required to securely detect large organic molecules. Confusion and continuum subtraction are major issues and have been handled with care. We have detected the aGg' conformer of ethylene glycol in Orion-KL. The emission is compact and peaks towards the Hot Core close to the main continuum peak, about 2" to the south-west; this distribution is notably different from other O-bearing species. Assuming optically thin lines and local thermodynamic equilibrium, we derive a rotational temperature of 145 K and a column density of 4.6 1015^{15} cm2^{-2}. The limit on the column density of the gGg' conformer is five times lower.Comment: 19 pages, 10 figures, A&A accepte

    HCOOCH3 as a probe of temperature and structure of Orion-KL

    Full text link
    We studied the O-bearing molecule HCOOCH3 to characterize the physical conditions of the different molecular source components in Orion-KL. We identify 28 methyl formate emission peaks throughout the 50" field of observations. The two strongest peaks are in the Compact Ridge (MF1) and in the SouthWest of the Hot Core (MF2). Spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position we find a temperature of 80K in a 1.8"x0.8" beam size and 120K on a larger scale (3.6" x2.2"), suggesting an external source of heating, whereas the temperature is about 130K at the MF2 position on both scales. Transitions of HCOOCH3 in vt=1 are detected as well and the good agreement of the positions on the rotational diagrams between the vt=0 and the vt=1 transitions suggests a similar temperature. The velocity of the gas is between 7.5 and 8.0km/s depending on the positions and column density peaks vary from 1.6x10^16 to 1.6x10^17cm^-2. A second velocity component is observed around 9-10 km/s in a North-South structure stretching from the Compact Ridge up to the BN object; this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected and the derived upper limit for the column density is <3x10^14cm^-2 for glycolaldehyde and <2x10^15cm^-2 for acetic acid. From the 223GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8Msun. Assuming that the HCOOCH3 is spatially distributed as the dust, we find relative abundances of HCOOCH3 in the range <0.1x10^-8 to 5.2x10^-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 mum H2 emission.Comment: Accepted for publication in A&

    Searching for Trans Ethyl Methyl Ether in Orion KL

    Full text link
    We report on the tentative detection of transtrans Ethyl Methyl Ether (tEME), tCH3CH2OCH3t-CH_3CH_2OCH_3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauchegauche-transtrans-n-propanol, GtnCH3CH2CH2OHGt-n-CH_3CH_2CH_2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are (4.0±0.8)×1015cm2\leq(4.0\pm0.8)\times10^{15} cm^{-2} and (1.0±0.2)×1015cm2\leq(1.0\pm0.2)\times10^{15} cm^{-2} for tEME and Gt-n-propanol, respectively. The rotational temperature is 100K\sim100 K for both molecules. We also provide maps of CH3OCOHCH_3OCOH, CH3CH2OCOHCH_3CH_2OCOH, CH3OCH3CH_3OCH_3, CH3OHCH_3OH, and CH3CH2OHCH_3CH_2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME)150N(CH_3OCH_3)/N(tEME)\geq150 in the compact ridge of Orion.Comment: Accepted in A&A Letter

    Extended Star Formation and Molecular Gas in the Tidal Arms near NGC3077

    Full text link
    We report the detection of ongoing star formation in the prominent tidal arms near NGC 3077 (member of the M 81 triplet). In total, 36 faint compact HII regions were identified, covering an area of ~4x6 kpc^2. Most of the HII regions are found at HI column densities above 1x10^21 cm^-2 (on scales of 200 pc), well within the range of threshold columns measured in normal galaxies. The HII luminosity function resembles the ones derived for other low-mass dwarf galaxies in the same group; we derive a total star formation rate of 2.6x10^-3 M_sun/yr in the tidal feature. We also present new high-resolution imaging of the molecular gas distribution in the tidal arm using CO observations obtained with the OVRO interferometer. We recover about one sixth of the CO flux (or M_H2~2x10^6 M_sun, assuming a Galactic conversion factor) originally detected in the IRAM 30m single dish observations, indicating the presence of a diffuse molecular gas component in the tidal arm. The brightest CO peak in the interferometer map (comprising half of the detected CO flux) is coincident with one of the brightest HII regions in the feature. Assuming a constant star formation rate since the creation of the tidal feature (presumably ~3x10^8 years ago), a total mass of ~7x10^5 M_sun has been transformed from gas into stars. Over this period, the star formation in the tidal arm has resulted in an additional enrichment of Delta(Z)>0.002. The reservoir of atomic and molecular gas in the tidal arm is ~3x10^8 M_sun, allowing star formation to continue at its present rate for a Hubble time. Such wide-spread, low-level star formation would be difficult to image around more distant galaxies but may be detectable through intervening absorption in quasar spectra.Comment: Accepted for publication in the Astronomical Journa

    Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin.

    Get PDF
    Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings

    Observation of the Halo of NGC 3077 Near the "Garland" Region Using the Hubble Space Telescope

    Get PDF
    We report the detection of upper main sequence stars and red giant branch stars in the halo of an amorphous galaxy, NGC3077. The observations were made using Wide Field Planetary Camera~2 on board the Hubble Space Telescope. The red giant branch luminosity function in I-band shows a sudden discontinuity at I = 24.0 +- 0.1 mag. Identifying this with the tip of the red giant branch (TRGB), and adopting the calibration provided by Lee, Freedman, & Madore (1993) and the foreground extinction of A_B = 0.21 mag, we obtain a distance modulus of (m-M)_0 = 27.93 +- 0.14(random) +- 0.16(sys). This value agrees well with the distance estimates of four other galaxies in the M81 Group. In addition to the RGB stars, we observe a concentration of upper main sequence stars in the halo of NGC3077, which coincides partially with a feature known as the ``Garland''. Using Padua isochrones, these stars are estimated to be <150 Myrs old. Assuming that the nearest encounter between NGC3077 and M81 occurred 280 Myrs ago as predicted by the numerical simulations (Yun 1997), the observed upper main sequence stars are likely the results of the star formation triggered by the M81-NGC3077 tidal interaction.Comment: 15 pages, 8 figures. Accepted for publication in Astrophysical Journa

    The Discovery of a Molecular Complex in the Tidal Arms near NGC 3077

    Get PDF
    We present the discovery of a giant molecular complex (r=350 pc, M_ vir=10^7 M_sun) in the tidal arms south-east of NGC 3077, a member of the M 81 triplet. The complex is clearly detected in the 12CO (J=1-0) transition at five independent positions. The position relative to NGC 3077, the systemic velocity (v_hel=14km/s) and the cloud averaged line width (15km/s) indicate that the object is not related to Galactic cirrus but is extragalactic. The tidal HI arm where the molecular complex is located has an total HI mass of M_HI=3x10^8 M_sun. This tidal material was presumably stripped off the outer parts of NGC 3077 during the closest encounter with M 81, about 3x10^8 years ago. After the complex detected along a torn-out spiral arm of M 81 by Brouillet et al., it is the second of its kind reported so far. Based on published optical observations, we have no evidence for on--going star formation in the newly detected molecular complex. Since the system has all the ingredients to form stars in the future, we speculate that it might eventually resemble the young dwarf galaxies in the M 81 group.Comment: 12 pages (including 3 figures), accepted for publication in the ApJ Letter
    corecore