132 research outputs found

    Finite key performance of satellite quantum key distribution under practical constraints

    Get PDF
    Global-scale quantum communication networks will require efficient long-distance distribution of quantum signals. Optical fibre communication channels have range constraints due to exponential losses in the absence of quantum memories and repeaters. Satellites enable intercontinental quantum communication by exploiting more benign inverse square free-space attenuation and long sight lines. However, the design and engineering of satellite quantum key distribution (QKD) systems are difficult and characteristic differences to terrestrial QKD networks and operations pose additional challenges. The typical approach to modelling satellite QKD (SatQKD) has been to estimate performances with a fully optimised protocol parameter space and with few payload and platform resource limitations. Here, we analyse how practical constraints affect the performance of SatQKD for the Bennett-Brassard 1984 (BB84) weak coherent pulse decoy state protocol with finite key size effects. We consider engineering limitations and trade-offs in mission design including limited in-orbit tunability, quantum random number generation rates and storage, and source intensity uncertainty. We quantify practical SatQKD performance limits to determine the long-term key generation capacity and provide important performance benchmarks to support the design of upcoming missions

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Responsive Operations for Key Services (ROKS): A Modular, Low SWaP Quantum Communications Payload

    Get PDF
    Quantum key distribution (QKD) is a theoretically proven future-proof secure encryption method that inherits its security from fundamental physical principles. With a proof-of-concept QKD payload having flown on the Micius satellite since 2016, efforts have intensified globally. Craft Prospect, working with a number of UK organisations, has been focused on miniaturising the technologies that enable QKD so that they may be used in smaller platforms including nanosatellites. The significant reduction of size, and therefore the cost of launching quantum communication technologies either on a dedicated platform or hosted as part of a larger optical communications will improve potential access to quantum encryption on a relatively quick timescale. The Responsive Operations for Key Services (ROKS) mission seeks to be among the first to send a QKD payload on a CubeSat into low Earth orbit, demonstrating the capabilities of newly developed modular quantum technologies. The ROKS payload comprises a quantum source module that supplies photons randomly in any of four linear polarisation states fed from a quantum random number generator; an acquisition, pointing, and tracking system to fine-tune alignment of the quantum source beam with an optical ground station; an imager that will detect cloud cover autonomously; and an onboard computer that controls and monitors the other modules, which manages the payload and assures the overall performance and security of the system. Each of these modules have been developed with low Size, Weight and Power (SWaP) for CubeSats, but with interoperability in mind for other satellite form factors. We present each of the listed components, together with the initial test results from our test bench and the performance of our protoflight models prior to initial integration with the 6U CubeSat platform systems. The completed ROKS payload will be ready for flight at the end of 2022, with various modular components already being baselined for flight and integrated into third party communication missions

    A new method for chlorhexidine (CHX) determination: CHX release after application of differently concentrated CHX-containing preparations on artificial fissures

    Get PDF
    Aims of the study were (1) to establish a method for quantification of chlorhexidine (CHX) in small volumes and (2) to determine CHX release from differently concentrated CHX-containing preparations, varnishes, and a CHX gel applied on artificial fissures. CHX determination was conducted in a microplate reader using polystyrene wells. The reduced intensity of fluorescence of the microplates was used for CHX quantification. For verification of the technique, intra- and inter-assay coefficients of variation were calculated for graded series of CHX concentrations, and the lower limit of quantification (LLOQ) was determined. Additionally, artificial fissures were prepared in 50 bovine enamel samples, divided into five groups (A–E, n = 10) and stored in distilled water (7 days); A: CHX-varnish EC40; B: CHX-varnish Cervitec; C: CHX-gel Chlorhexamed; D: negative control, no CHX application; and E: CXH-diacetate standard (E1, n = 5) or CHX-digluconate (E2, n = 5) in the solution. The specimens were brushed daily, and CHX in the solution was measured. The method showed intra- and inter-assay coefficients of variation of <10 and <20%, respectively; LLOQ was 0.91–1.22 nmol/well. The cumulative CHX release (mean ± SD) during the 7 days was: EC40 (217.2 ± 41.8 nmol), CHX-gel (31.3 ± 8.5 nmol), Cervitec (18.6 ± 1.7 nmol). Groups A–C revealed a significantly higher CHX release than group D and a continuous CHX-release with the highest increase from day 0 to 7 for EC40 and the lowest for Chlorhexamed. The new method is a reliable tool to quantify CHX in small volumes. Both tested varnishes demonstrate prolonged and higher CHX release from artificial fissures than the CHX-gel tested

    Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Get PDF
    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding

    Development and validation of a microbiological assay for determination of chlorhexidine digluconate in aqueous solution

    Get PDF
    Chlorhexidine (CHX) is a broad-spectrum antiseptic that is used in many topical pharmaceutical formulations. Because there is no official microbiological assay reported in the literature that is used to quantify CHX, this paper reports the development and validation of a simple, sensitive, accurate and reproducible agar diffusion method for the dosage of chlorhexidine digluconate (CHX-D) in an aqueous solution. The assay is based on the inhibitory effect of CHX-D upon the strain of Staphylococcus aureus ATCC 25923, which is used as the test microorganism. The design 3x3 parallel-line model was used. The results were treated statistically by analysis of variance (ANOVA), and they were excellent in terms of linearity (r = 0.9999), presenting a significant regression between the zone diameter of growth inhibition and the logarithm of the concentration within the range of 0.5 to 4.5%. The results obtained were precise, having relative standard deviations (RSD) for intra-day and inter-day precision of 2.03% and 2.94%, respectively. The accuracy was 99.03%. The method proved to be very useful and appropriate for the microbiological dosage of CHX-D in pharmaceutical formulations; it might also be used for routine drug analysis during quality control in pharmaceutical industries

    Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice

    Get PDF
    <div><p>Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. <i>In utero</i> exposure to CP also significantly reduced testis weights at 4 weeks of age to ∌70% of control and induced atrophic seminiferous tubules in ∌30% of the testes. When the <i>in utero</i> CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents <i>in utero</i> may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.</p></div

    Key generation analysis for satellite quantum key distribution

    No full text
    Developing global quantum communication networks is integral to the realisation of the quantum internet, which is expected to impart a similar revolutionary impact on the technological landscape as the classical internet. Satellite-based quantum communications provides a practical route to global quantum networking. In this work, we model finite statistics to determine the finite secret key length generation in SatQKD systems that implement trusted-node downlink operation with weak coherent pulse sources. We optimise the finite key rate for different practical operations and determine the key generation footprints. Our work provides an essential guide for future satellite missions to establish performance benchmarks for both sources and detectors
    • 

    corecore