501 research outputs found

    Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery.

    Get PDF
    Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations

    The dog as an animal model for bladder and urethral urothelial carcinoma: comparative epidemiology and histology

    Get PDF
    Despite the recent approval of several novel agents for patients with metastatic urothelial carcinoma (UC), survival in this setting remains poor. As such, continued investigation into novel therapeutic options remains warranted. Pre clinical development of novel treatments requires an animal model that accurately simulates the disease in humans. The aim of the present study was to evaluate the dog as an animal model for human UC. A total of 260 cases of spontaneous, untreated canine primary urethral and urinary bladder UC, were epideĀ¬miologically and histologically assessed and classified based on the current 2016 World Health Organization (WHO) tumor classification system. Canine data was compared with human data available from scientific literature. The mean age of dogs diagnosed with UC was 10.22 years (range, 4 15 years), which is equivalent to 60 70 human years. The results revealed a high association between UC diagnosis with the female sex [odds ratio (OR) 3.51; 95% confidence interval (CI) 2.57 4.79; P<0.001], surgical neutering (OR 4.57; 95% CI 1.87 11.12; P<0.001) and breed (OR 15.11 for Scottish terriers; 95% CI 8.99 25.41; P<0.001). Based on the 2016 WHO tumor (T), node and metastasis staging system, the primary tumors were characterized as T1 (38%), T2a (28%), T2b (13%) and T3 (22%). Non papillary, flat subgross tumor growth was strongly associated with muscle invasion (OR 31.00; P<0.001). Irrespective of subgross growth pattern, all assessable tumors were invading beyond the basement membrane compatible with infiltrating UC. Conventional, not further classifiable infiltrating UC was the most common type of tumor (90%), followed by UC with divergent, squamous and/or glandular differentiation (6%). Seven out of the 260 (2.8%) cases were classified as non urothelial based on their histological morphology. These cases included 5 (2%) squamous cell carciĀ¬nomas, 1 (0.4%) adenocarcinoma and 1 (0.4%) neuroendocrine tumor. The 2 most striking common features of canine and human UC included high sex predilection and histological tumor appearance. The results support the suitability of the dog as an animal model for UC and confirm that dogs also spontaneously develop rare UC subtypes and bladder tumors, including plasmacytoid UC and neuroendocrine tumor, which are herein described for the first time in a non experimental animal species

    Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery

    Get PDF
    Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations

    Remote effects of acute kidney injury in a porcine model

    Get PDF
    Background: Acute Kidney Injury (AKI) is a common and serious disease with no specific treatment. An episode of AKI may affect organs distant to the kidney, further increasing the morbidity associated with AKI. The mechanism of organ cross-talk after AKI is unclear. The renal and immune systems of pigs and humans are alike. Using a preclinical animal (porcine) model, we test the hypothesis that early effects of AKI on distant organs is by immune cell infiltration leading to inflammatory cytokine production, extravasation and edema. Study Design: In 29 pigs exposed to either sham-surgery or renal ischemia-reperfusion (control, n=12; AKI, n=17) we assessed remote organ (liver, lung, brain) effects in the short-(from 2 to 48h reperfusion) and longer-term (5 weeks later) using immunofluorescence (for leucocyte infiltration, apoptosis), a cytokine array, tissue elemental analysis (electrolytes), blood hematology and chemistry (e.g. liver enzymes) and PCR (for inflammatory markers). Results: AKI elicited significant, short-term (~24h) increments in enzymes indicative of acute liver damage (e.g. AST:ALT ratio; P=0.02) and influenced tissue biochemistry in some remote organs (e.g. lung tissue [Ca++] increased; P=0.04). These effects largely resolved after 48h and no further histopathology, edema, apoptosis or immune cell infiltration was noted in liver, lung or hippocampus in the short- and longer-term. Conclusions: AKI has subtle biochemical effects on remote organs in the short-term including a transient increment in markers of acute liver damage. These effects resolved by 48h and no further remote organ histopathology, apoptosis, edema or immune cell infiltration was noted

    Predictors of vitamin D status and its association with parathyroid hormone in young New Zealand children.

    No full text
    BACKGROUND: Despite increased awareness of the adverse health effects of low vitamin D status, few studies have evaluated 25-hydroxyvitamin D [25(OH)D] status in young children. OBJECTIVES: We aimed to assess vitamin D status on the basis of 25(OH)D and its relation with parathyroid hormone (PTH) and to identify possible predictors of 25(OH)D status in young children living in a country with minimal vitamin D fortification. DESIGN: Serum 25(OH)D and PTH concentrations were measured in a cross-sectional sample of children aged 12-22 mo [n = 193 for 25(OH)D, n = 144 for PTH] living in Dunedin, New Zealand (latitude: 45 degrees S). Anthropometric, dietary, and sociodemographic data were collected. RESULTS: The majority of children sampled in the summer (94%; 47 of 50) had 25(OH)D >50 nmol/L; however, nearly 80% of children sampled in the winter (43 of 55) had serum concentrations 60-65 nmol/L, a plateau in PTH was evident. CONCLUSIONS: Seasonal variation in 25(OH)D concentration implies that postsummer vitamin D stores were insufficient to maintain status >50 nmol/L year-round. Examination of the predictors of 25(OH)D in our model shows few modifiable risk factors, and thus effective dietary strategies may be required if future research determines that children with 25(OH)D concentrations <50 nmol/L are at significant health risk. This trial was registered at www.actr.org.au as ACTRN12605000487617

    Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    Get PDF
    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H2O2) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

    Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake.

    Get PDF
    Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments

    Immunohistochemical Characterisation of GLUT1, MMP3 and NRF2 in Osteosarcoma.

    Get PDF
    Osteosarcoma (OSA) is an aggressive bone malignancy. Unlike many other malignancies, OSA outcomes have not improved in recent decades. One challenge to the development of better diagnostic and therapeutic methods for OSA has been the lack of well characterized experimental model systems. Spontaneous OSA in dogs provides a good model for the disease seen in people and also remains an important veterinary clinical challenge. We recently used RNA sequencing and qRT-PCR to provide a detailed molecular characterization of OSA relative to non-malignant bone in dogs. We identified differential mRNA expression of the solute carrier family 2 member 1 (SLC2A1/GLUT1), matrix metallopeptidase 3 (MMP3) and nuclear factor erythroid 2-related factor 2 (NFE2L2/NRF2) genes in canine OSA tissue in comparison to paired non-tumor tissue. Our present work characterizes protein expression of GLUT1, MMP3 and NRF2 using immunohistochemistry. As these proteins affect key processes such as Wnt activation, heme biosynthesis, glucose transport, understanding their expression and the enriched pathways and gene ontologies enables us to further understand the potential molecular pathways and mechanisms involved in OSA. This study further supports spontaneous OSA in dogs as a model system to inform the development of new methods to diagnose and treat OSA in both dogs and people
    • ā€¦
    corecore