4,603 research outputs found

    The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study

    Get PDF
    The mostly ice covered Arctic Ocean is dominated by low‐level liquid‐ or mixed‐phase clouds. Turbulence within stratocumulus is primarily driven by cloud top cooling that induces convective instability. Using a suite of in situ and remote sensing instruments we characterize turbulent mixing in Arctic stratocumulus, and for the first time we estimate profiles of the gradient Richardson number at relatively high resolution in both time (10 min) and altitude (10 m). It is found that the mixing occurs both within the cloud, as expected, and by wind shear instability near the surface. About 75% of the time these two layers are separated by a stably stratified inversion at 100–200 m altitude. Exceptions are associated with low cloud bases that allow the cloud‐driven turbulence to reach the surface. The results imply that turbulent coupling between the surface and the cloud is sporadic or intermittent

    Damage and energy absorption behaviour of composite laminates under impact loading using different impactor geometries

    Get PDF
    The present paper compares the damage and energy absorption behaviour of composites subjected to low-velocity impact using different frontal geometries for the impactor, with the composites possessing a layup of [02/902]2s. In this study, the rigid impactors with either round-nosed or flat-ended frontal geometry are employed to perform drop-weight tests at various impact energies ranging from 10 to 30 J. The measured loading response and energy absorption are analysed and compared. Additionally, the types and extent of impact-induced damage in the composite specimens are assessed via ultrasonic C-scan, optical microscopy (OM) and scanning electron microscopy (SEM) studies. It is shown that the impact energy threshold for damage initiation is greater than 20 J when using the flat-ended impactor but is less than 10 J when using the round-nosed impactor. In both cases, delamination initiates between the plies in the composite laminate. However, for the flat-ended impactor, the damage behaviour of the fibres exhibits kinking fracture, which differs from the pull-out fibre-fracture caused by the round-nosed impactor. These differences in behaviour are attributed to impactor/composite contact geometry effects which leads to different extents of indentation damage, which in turn directly affects the degree of delamination and fibre damage in the composite

    Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors

    Get PDF
    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∌14 mm s−1^{−1} producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p  0.05).This research was supported by the European Research Council (Grant No. 240446) and the EPSRC (EP/E025862/1). Financial support for M.C.V. and R.A.B. has been provided through the WD Armstrong studentship and the National Institute for Health Research, respectively

    Solid state NMR of isotope labelled murine fur: a powerful tool to study atomic level keratin structure and treatment effects

    Get PDF
    We have prepared mouse fur extensively 13^{13}C,15^{15}N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. 13^{13}C double quantum-single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro. Also the partial resolution of the amide signals into two signal envelopes comprising of α\alpha-helical, and ÎČ\beta-sheet/random coil components, enables resolution of otherwise overlapped α\alpha-carbon signals into two distinct cross peak families corresponding to these respective secondary structural regions. The increase in resolution conferred by extensive labelling offers new opportunities to study the chemical fate and structural environments of specific atom and amino acid types under the influence of commercial processes, and therapeutic or cosmetic treatments.Medical Research Council (Grant ID: RG75828), Engineering and Physical Sciences Research Council (Ph.D. studentships), National Institute of Health Researc

    Progression of sleep disturbances in Parkinson’s Disease. A 5-year longitudinal study.

    Get PDF
    BACKGROUND: Sleep disorders can occur in early Parkinson’s disease (PD). However, the relationship between different sleep disturbances and their longitudinal evolution has not been fully explored. OBJECTIVE: To describe the frequency, coexistence and longitudinal change in excessive daytime sleepiness (EDS), insomnia and probable REM sleep behaviour disorder (pRBD) in early PD. METHODS: Data were obtained from the Parkinson’s Progression Markers Initiative (PPMI). EDS, insomnia, and pRBD were defined using the Epworth Sleepiness Scale, MDS-UPDRS Part I sub-item 1.7, and RBD screening questionnaire. RESULTS: 218 PD subjects and 102 controls completed five years of follow up. At baseline, 69 (31.7%) PD subjects reported one type of sleep disturbance, 25 (11.5%) reported two types of sleep disturbances, and three (1.4%) reported all three types of sleep disturbances. At five years, the number of PD subjects reporting one, two and three types of sleep disturbances was 85 (39.0%), 51 (23.4%), and 16 (7.3%), respectively. Only 41(18.8%) patients were taking sleep medications. The largest increase in frequency was seen in insomnia (44.5%), followed by EDS (32.1%) and pRBD (31.2%). Insomnia was the most common sleep problem at any time over the 5-year follow-up. The frequency of sleep disturbances in HCs remained stable. CONCLUSIONS: There is a progressive increase in the frequency of sleep disturbances in PD, with the number of subjects reporting multiple sleep disturbances increasing over time. Relatively few patients reported multiple sleep disturbances, suggesting that they can have different pathogenesis. A large number of patients were not treated for their sleep disturbances
    • 

    corecore