
The transient voltage response of ReBCO
coated conductors exhibiting dynamic
resistance

J M Brooks1,3 , M D Ainslie2 , Zhenan Jiang1 , A E Pantoja1,
R A Badcock1 and C W Bumby1,3

1 Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, New Zealand
2Bulk Superconductivity Group, Department of Engineering, University of Cambridge, United Kingdom

E-mail: gus.brooks@vuw.ac.nz and chris.bumby@vuw.ac.nz

Received 5 November 2019, revised 4 December 2019
Accepted for publication 15 January 2020
Published 4 February 2020

Abstract
Dynamic resistance can be observed in a superconducting tape carrying a DC current which is
exposed to an oscillating magnetic field. This effect is attributed to the interaction between the
transport current and moving fluxons, and can occur in various superconducting components
including high temperature superconducting (HTS) flux pumps, fast-ramping magnets and HTS
rotating machines. Although conventionally expressed in terms of a DC ‘resistance,’ the
phenomenon is inherently transient in nature, and the voltage drop across the superconductor
follows a time-dependent periodic waveform. Here we present experimental measurements of the
dynamic resistance of different REBCO tapes carrying a DC current and exposed to an
oscillating perpendicular field. Measurements of both the transient voltage waveforms and the
time-averaged DC resistances are compared with numerical finite element simulations obtained
using the H-formulation. We observe clear variations between the voltage response from
different tapes, which can be understood in terms of their differing Jc(B, θ) dependence. In
particular, a key feature of the experimentally measured waveforms is the emergence of a split
‘double peak’ at higher applied fields. Graphical visualisations of the finite element data show
that this coincides with a periodic increase in Jc(B, θ) throughout the tape. This occurs during
each cycle at those times when the applied field falls below the shielding threshold of the tape (as
the penetrating field within the tape then approaches zero). Our findings show that models which
assume a constant Jc irrespective of local field strength cannot capture the full range of behaviour
observed by experiment. This emphasises the importance of employing experimentally measured
Jc(B, θ) data when simulating transient effects in HTS materials.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The commercial availability of kilometre-plus lengths of
coated conductor REBCO tapes enables the production of
large-scale high temperature superconducting (HTS) magnets
and power systems. Such devices include DC and AC mag-
nets, transformers and rotating machines. When super-
conducting devices are exposed to time-varying fields and
currents, dissipative interactions occur between moving
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fluxons and the transport current. Here we investigate the AC
loss that occurs when a superconductor carries a DC transport
current whilst simultaneously exposed to an AC magnetic field.
Under these conditions, a DC electrical resistance is observed,
termed the dynamic resistance. This DC resistance is con-
ventionally discussed in terms of the net volume of flux which
traverses the DC current carrying region of the superconductor
during each cycle [1–4]. Understanding the origin and beha-
viour of dynamic loss is relevant to optimising the management
of heat dissipation for various HTS applications. In addition,
dynamic resistance has also been identified to play a key role in
the operating mechanism of HTS flux pumps [5–9].

Dynamic resistance is generally considered a DC effect
[10–15], although experimental measurements of the time
dependence of the measured voltage have been reported in
[16, 17]. Exact analytical solutions for the magnetic field and
current density in a superconducting strip carrying a DC
transport current exposed to an oscillating magnetic have
previously been derived from the critical state model (in
which Jc is assumed to be constant) [18–21]. These were used
in [22] to suggest the following picture. When a super-
conducting thin film is exposed to an alternating magnetic
field, magnetisation currents flow in the outer regions of the
conductor. If the amplitude of the applied field is less than
some sample-dependent threshold value Bth, the applied field
fails to fully penetrate the conductor and there is an interior
region of frozen flux. Any transport current flowing in this
region does not experience a change in magnetic field and is
able to flow with zero electrical resistance. However, once Bth

is exceeded, this interior region experiences a change in flux
and a non-zero dynamic resistance is observed, which is due
to the work done by the power supply in applying a Lorentz
force to the net flux traversing the film. Both [14, 22] state
that, for a superconducting strip of width 2w and thickness d
filling the space |x|�w, |y|�d/2 and |z|<∞, centred at
(x, y)=(0, 0) and experiencing a homogenous magnetic field
Bapp(t)=Ba0 sin(ωt) applied along the y axis, the total
dynamic resistance per cycle is given by
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Equations (2) and (3) come from [14, 22] respectively. The
values obtained for Bth from each equation are found to
closely agree for i  0.1, but diverge at smaller transport
currents [22].

Here we present a detailed study of both the time-
dependent (instantaneous) and time-averaged (DC) dynamic
resistance which occurs in a REBCO coated conductor tape.
Experimental measurements are used to validate a computa-
tional model based on the H-formulation. This model is then
used to probe the time evolution of current and field within
the tape, and to illustrate effect of the Jc(B, θ) dependence of
the tape on the transient dynamic loss. We present visuali-
sations of the local current, B-field and E-field within the
superconducting tape, which reveal the complex behaviour
over each cycle. Importantly, this improved and detailed
understanding now allows key features in the transient
induced voltage response to be understood, and provides key
insights into the role of Jc(B, θ) and n(B, θ) on the absolute
magnitude of the observed DC resistance.

2. The H-formulation finite element method

We have computed the dynamic resistance which arises in a
REBCO tape using the finite element architecture shown in
figure 1. Time-dependent numerical calculations are performed
in COMSOL Multiphysics 5.3a® using a 2D H-formulation
model in the xy-plane (this assumes an infinitely long super-
conducting tape in the z direction). The solutions are obtained

Figure 1. Schematic showing the orientation of axes, magnetic field and transport current within the REBCO tape.
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by solving Faraday’s law (4) and Ampere’s law (5)

m
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where H=[Hx, Hy] represents the magnetic field strength,
J=[Jz] the current density and E=[Ez] the electric field. The
permeability of free space is given by m0 and the relative
permeability of the superconducting domain is assumed
as mr=1.

The electrical properties of the superconductor are
modelled by an E–J power law [23, 24]
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where E0 is the characteristic electric field, 1 μV cm−1, and θ

is the orientation of the magnetic field relative to the sample,
as shown in figure 1. Two different sets of experimental data
describing Jc(B, θ) and n(B, θ), taken from two different tapes,
are investigated in this work, as described in section 4.1.

Meshing of the FE model consists of 200 elements along
the width of the superconducting domain (in the x-direction),
and 3 elements across its thickness (in the y-direction). This
ensures that the computational time required for the models
remains practical, while retaining enough resolution at the
surface of the superconductor when simulating the current
distribution. In the surrounding sub-domain, a free triangular
mesh is used. The subdomain boundary is sufficiently far
away such that the normal component of the magnetic field
due to the superconductor is zero. In the non-superconducting
subdomain, we solve a linear Ohm’s law with the resistivity
set to 1 Ωm. The computational model assumes that all losses
occur entirely in the HTS layer, a reasonable assumption for
low AC frequencies (e.g.  1 kHz) where the eddy-current
losses in the metallic layers are negligible [25, 26]. The HTS
layer is also assumed to remain at a constant temperature.
Thus, only contributions from the superconducting layer are
included when calculating the dynamic resistance, and no
temperature dependence is included.

The current and field distributions within the tape are
computed using a two stage process. First, a DC transport
current is applied to the superconductor, ramped from zero to
the required value. Following this, a sinusoidal perpendicular
magnetic field is then applied to the sample for two and a half
AC field oscillations. Subsequent data analysis neglects the
initial half cycle during which the superconducting strip is
magnetised from its virgin state. This ensures that the com-
puted values are periodic with the applied magnetic field.

A DC transport current, IT, is applied via an integral
constraint applied to the superconducting cross-section S of
the form

ò= =JI I tSd . 7T
S

app· ( ) ( )

In the first stage of the computation, Iapp(t) is a linear ramp
function with a gradient of 10 A s−1. This ramp function is

run until the DC transport current is equal to the self-field
critical current Ic0. Once completed, we have access to the
solution at all stored time intervals and reduced currents. The
second stage is then initiated using the solution which cor-
responds to the specified reduced current under study (i.e. i =
IT/Ic=0.3, 0.5 and 0.7). The sinusoidal perpendicular AC
magnetic field of the form Bapp=Ba0sin(ωt) is applied using
COMSOL’s magnetic field boundary condition.

The dynamic resistance, Rdyn, results in the development
of a voltage drop, ΔV, along the z-direction of the coated
conductor. This is calculated from the 2D FE model using:

D =
¶
¶

V t L
V t

z
, 8( ) · ( ) ( )

where L is the length of the conductor in the z-direction.
Dynamic resistance is a low-frequency quasi-static

phenomenon, such that the voltage drop is simply the dif-
ference in electrostatic potential across the conductor. In the
Coulomb gauge (defined by  =A 0,· such that

m =A J2
0 ), the electrostatic potential is equivalent to the

electric scalar potential, such that [25, 26]
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(Note that taking the divergence of both sides of equation (9)
yields the familiar definition of the electrostatic poten-
tial, r e = =EV2 · / .)

We obtain the magnetic vector potential, A, from the
inverse curl of B, and by specifying a Dirichlet boundary
condition that Az is equal to −Byx along the boundary of the
surrounding air subdomain. The 2D FE geometry constrains
currents from flowing in the plane of the model, such that
Jx=Jy=Ex=Ey=Ax =Ay =0. As a result, equation (9)
simplifies solely to the z components, with ¶ ¶V z/ constant
throughout the model plane for each moment in time. How-
ever, it should be noted that both Ez(x, y, t) and Az(x, y, t) are
functions of x and y, and hence do vary across the plane (see,
for example, figure 6(c)).

To minimise numerical error, we use the spatially-aver-
aged value of DV (t) across the HTS cross-section, calculated
using equation (10):

òD =
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The time-averaged DC dynamic resistance, in units of μΩ/m/
cycle, is then calculated by integratingDV over a single cycle
of the applied field and dividing by the transport current

ò= DR
I

Vdt
1

. 11
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T 0
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/

It is noteworthy that all dissipation within the superconductor
is fully described by the E–J relation given in equation (6). As
a result, the A-vector contribution can in fact be omitted from
equations (10) and (11) without loss of accuracy [27].
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3. Experimental methods

3.1. Dynamic resistance measurements

The dynamic resistance measurements were performed using
30 cm lengths of coated conductor tape mounted on a G10
sample board. This was positioned between a pair of copper-
wound racetrack coils capable of producing AC magnetic
fields with a peak amplitude up to 100 mT. Two separate
voltage measurements were obtained using two pairs of
voltage taps 20 cm apart. One pair was helically wound
around a cylindrical sheath encapsulating the sample board,
whilst the other was a twisted pair running up the centre of the
sample. The arrangement of these two voltage taps are shown
in figure 2. The measurement procedure was as follows.
Firstly, the magnet was energised, and a zero-transport current
voltage measurement was taken over two seconds. The
transport current through the sample was then increased to the
reduced current values i=0.3, 0.5, and 0.7, and voltage

measurements were taken for each current. The current was
then reset to zero and the magnet re-energised to produce a
larger field. This process was repeated until the desired
parameter space had been covered. The voltage waveform
measured at zero transport current for each Ba0 is due solely
to inductive pick-up from the loop formed by the connecting
leads between the sample and instruments. This provided a
calibration baseline which was then subtracted from sub-
sequent measurements performed at each non-zero current, in
order to yield a signal solely due to the interaction of the AC
field with the transport current flowing through the coated
conductor tape. The measured voltage signal passed through
an NF Electronics 5325 Isolation Amplifier before being
measured by an NI DAQ USB-6210 module, recording at a
sampling rate of 50 kHz. The collected waveforms were then
digitally processed to produce an averaged single cycle
waveform for comparison to the model results. The DC
resistance was obtained through time-averaging the voltage
waveform over this full cycle.

3.2. Coated conductor samples

Two different samples of REBCO tape were investigated
in this study: SuperPower SCS4050-AP and SuNAM
HCN04200 with specifications given in [30, 31]. Measure-
ments of the Jc(B, θ) and n(B, θ) parameters for each tape
were made using the Super Current instrument at the
Robinson Research Institute [28, 29]. Experimental mea-
surements were made at 77 K on short length samples
(∼5–7 cm), in applied magnetic fields up to 500mT and
obtained for a full 360° range of field orientations at 5°
increments. The measured values are shown in figure 3, which
illustrates the contrastingly different dependencies of critical
current upon applied magnetic field for each tape. Both tapes
were four mm wide with the superconducting layer being either
1.3 μm or 1 μm thick, for the SuNAM and SuperPower tapes,
respectively. The SuNAM tape had a self-field Ic0 of 205.5 A
and its Jc(B, θ) behaviour is symmetric about θ= 180°, and
periodic such that Ic(B, θ)≈Ic(B, θ+180°). In contrast, the
SuperPower tape had an Ic0 value of 105.6 A and the measured
critical current did not exhibit a symmetry plane with respect to
the angle of the applied field.

4. Model and experimental results

4.1. DC values for the dynamic resistance

Figure 4 shows the experimentally measured DC dynamic
resistance, Rdyn, per cycle obtained at a frequency of
118.66 Hz for three different values of i for both tapes, and
using the two different sets of experimental voltage taps
(‘spiral’ and ‘centre’). The Rdyn values are plotted as a
function of the applied field amplitude Ba0. Also plotted are
the analytical solutions obtained from equation (1) using
either equations (2) or (3) to define the threshold field. Con-
sistent with results reported in [13–15], we see that there is

Figure 2. (a) Photograph of the experimental apparatus used to
perform dynamic resistance measurements. (b) Photograph of the
experimental sample holder in which a REBCO tape is mounted
(within the cylindrical sheath). (c) Schematic diagram showing the
geometry of the sample voltage taps used in the experimental sample
holder. Both consist of a twisted pair of copper wires. The centre
voltage taps run along all the broad face of the conductor while the
spiral pair are wound around a cylindrical sheath surrounding the
sample.
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very close agreement between these equations and exper-
imental results.

For comparison, figure 4 also shows the calculated values
of Rdyn obtained from the numerical model. Simulations have
been performed using two different functions for Jc(B, θ) and
n(B, θ).

(i) Constant Jc model (Jc= Jc0): in this model, the critical
current and n-value are both assumed to be constant at
all times, and are set equal to the values measured in
zero applied field, i.e. Jc(B, θ)=Jc0, n=20. In
sections 4.1 and 4.2, a modified version of the constant
Jc model has also been considered, which uses an
artificially high n-value of n=200, as a close
approximation to the critical state model.

(ii) Interpolated Jc(B, θ) model: this model uses the
experimentally-measured values shown in figure 3.
Self-field effects are removed from the experimental
measurements by the method described in [30], to
provide a set of self-fieldcorrected Jc(B, θ) values.
These describe the local critical current density at each
point within the tape, as a function of the total local
magnetic field, B. Both the Jc and n-values are then
input into the numerical model using a two variable
interpolation function, as described in [31, 32].

The interpolated Jc(B, θ) model is observed to deliver
good agreement with experiment, although it does appear to
slightly underestimate Bth in every case. However, the con-
stant Jc, n=20 model diverges substantially from

experiment, and significantly understates the magnitude of
dR dBdyn a0/ at fields above Bth. This highlights the importance
of including the full Jc(B, θ) dependence within the FE model.
It also raises the question as to why the analytical
equations (1)–(3) are so successful, despite employing a
constant critical current value. On this point, it is instructive
to note that the analytical approaches assume n→∞, whilst
the constant Jc FE model uses the realistic finite value of
n=20. By contrast, if the FE model is instead run using a
much higher n-value of n=200, we obtain results which
closely agree with equations (2) and (3). This suggests that
the artificially high n-value within the critical state model can
compensate for the error introduced by assuming a constant
Jc. This appears to be a ‘happy accident’ that holds for the
samples and experimental conditions considered here, but it is
not clear how applicable these equations would be in other
differing situations [12, 16, 33].

4.2. Transient voltage response to a perpendicular sinusoidal
field

In addition to DC experimental measurements, transient time-
resolved measurements were also performed to obtain the
resistive voltage waveform across each sample tape. Figure 5
shows these experimentally-measured voltage waveforms,
and compares these with the corresponding waveforms
obtained from the numerical simulations using each of the
Jc(B, θ) models. Each plot shows the response over two cycles
of the applied field at 118.66 Hz for i=0.5.

Figure 3. Experimentally measured Ic(B, θ) and n(B, θ) data at 77 K as a function of applied magnetic field amplitude and orientation relative
to the sample as indicated in figure 1. Plots (a), (b) show the SuNAM data and plots (c), (d) show the Super Power data.
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As expected [3, 17, 27], the numerical models all predict
a voltage waveform that is periodic over one half cycle of the
applied magnetic field (i.e. its fundamental frequency is twice
that of the applied field). This is because applied flux interacts
with the transport current whenever the magnitude of the
applied field exceeds the shielding capacity of the tape. This
occurs during each half cycle, irrespective of the polarity of
the applied field. There is a noticeable difference in both the
amplitude and shape of the waveforms calculated using
constant Jc model with n= 200 (approximating to the critical
state model), versus n= 20 (which is close to the actual
measured value of n in self-field). In particular, the lower n-
value exhibits both a smaller peak amplitude and a smaller
peak width. This is the reason that it delivers a lower time-
averaged DC resistance (shown in figure 4).

Similar to the constant Jc models, the experimental
waveform data also shows a doubling of the fundamental
frequency of the voltage waveform compared to the applied
field. However, several striking differences are also apparent.
Most notably, as the magnetic field amplitude increases well
above Bth, a peak-splitting effect is observed whereby a non-

zero minimum appears within each waveform at Bapp(t)∼ 0.
The only numerical model which reproduces this feature is
the interpolated Jc(B, θ) model [27]. Understanding the origin
of this ‘peak-splitting’ effect requires detailed scrutiny of the
current and field distributions, and is explored in the fol-
lowing section.

In addition, the interpolated Jc(B, θ) model for the
SuperPower tape also shows a small asymmetry in the
amplitude of the voltage peaks observed during the positive
and negative half-cycles of applied field. This is due to the
asymmetric angular dependence of Jc(B, θ) for these tapes.

5. Contour plots of sheet currents and fields

The currents and fields present within the REBCO tape vary
in both space and time. To graphically visualise the calculated
values, it is convenient to consider the equivalent ‘sheet
value’ that would be present in a planar superconductor with
infinitesimal thickness in the y-direction. These sheet values
are obtained by integrating and averaging over the thickness

Figure 4. The dynamic resistance per cycle as a function of Ba0, for SuNAM (a)–(c) and SuperPower (d)–(f) tapes. The data is given for
i=0.3, 0.5 and 0.7 for a frequency, f=118.66 Hz. Experimental data from the spiral and centre voltage taps is shown, alongside values
calculated from equations (1)–(3). The numerically-modelled data is also shown for models run using various different functions to describe
Jc(B, θ), namely: constant Jc(n=20), constant Jc(n=200) and interpolated Jc(B, θ).
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Figure 5. Experimental measurements of the instantaneous voltage, ΔV(t), across each REBCO tape sample, compared with numerically-
modelled values obtained from the constant Jc and interpolated Jc(B, θ) models. The SuperPower and SuNAM data are shown in the left and
right columns, respectively. All plots are for i=0.5 and f=118.66 Hz. Plots (a) and (b) show the applied field; (c) and (d) show the
experimental waveforms; (e) and (f) show the constant Jc (n=20) models; (g) and (h) show the constant Jc (n=200) models; and (i) and (j)
show the interpolated Jc(B, θ) waveforms.
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of the superconductor layer, d, as shown in equations (12)–
(15). These equations define the sheet current density Kz, the
sheet critical current Kc, the sheet perpendicular magnetic
field ¢B ,y and the sheet electric field ¢E .z
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-

B x t
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The benefit of applying equations (12)–(15) is to transform the
2D arrays calculated for the full cross-section of the tape (i.e. for
each position x, y), into 1D arrays which vary in the x-direction
only. This then allows the sheet values to be graphically plotted
against time in a contour plot. An example is shown in figure 6,
where contour plots (a)–(d) show the evolution over two and a
half cycles of Kz, ¢B ,y Kc and ¢E ,z calculated using the constant Jc
model. The x-axis denotes the position across the width of the
superconducting tape, which extends from −2 to +2 mm. The
y-axis value denotes the elapsed time and is plotted in units of
ωt such that one full cycle of the applied field has a period
of 2π.

The value of the plotted variable at coordinates (x, t) is
indicated by the colour-bar scale shown above each plot. In
addition, plots (d) and (e) show the variation over time of ΔV
and Bapp(t). This allows features in these waveforms to be
correlated with the spatial distributions shown in each contour
plot. In order to illustrate the interpretation of these contour
plots, three example moments-in-time are indicated by the
horizontal dashed lines labelled ωt=0, 2π/3, and 4π/3.
Figures 6(f)–(n) show line plots of the respective values of Kz,
¢By and ¢E ,z obtained at each of these same moments-in-time,

as a function of position across the width of the super-
conductor. Each line plot is directly equivalent to the contour
intersected by the corresponding horizontal dashed line in
plots figure 6(a)–(c).

5.1. Constant Jc0 FE model

Using figure 6, we can now examine the evolution of Kz, ¢B ,y

and ¢Ez in the constant Jc model for the SuperPower tape at
i=0.5 and Ba0=100 mT.

Plot figure 6(a) shows that magnetisation screening cur-
rents occur at the edges of the film, but are only distin-
guishable on the side where the screening currents run anti-
parallel to the DC transport current. These screening currents
penetrate to an approximately constant depth in each half-
cycle. This conforms with the conventional critical state
model for dynamic resistance [3, 22], where the transport
current is considered to occupy a constant width region at the
centre of the tape. Once dBapp/dt changes sign (at
ωt=(2m+1)π/2 where m=integer), the existing

screening current distribution begins to be erased by opposite
polarity screening currents which enter from each side. The
complete erasure of the previous anti-parallel component of
the screening current on one side of the film occurs shortly
after ωt≈2π/3, and coincides with an increase from zero of
ΔV in plot (d).

Plot figure 6(b) shows that the behaviour of the magnetic
field inside the superconductor broadly follows the periodic
behaviour of the applied field, and reaches its maximum and
minimum values at approximately the same time as the
applied field. These peak internal fields occur at either edge of
the superconductor in the region in which screening currents
are being erased. At the edge where screening currents run
parallel to the transport current, the local magnetic field
within the superconductor is much larger than Ba0. Once the
applied field magnitude passes its peak value (at
ωt=(2m+1)π/2), a new screening current distribution is
established in the tape. The new screening current distribution
then enables a very low magnetic field to persist throughout
the superconductor whilst the applied field reverses polarity
(ωt=mπ). At this point flux begins to enter the super-
conductor again from both edges, whilst a region of zero flux
remains spatially-frozen close to the current-reversal zone
[14]. This frozen flux gives rise to the characteristic contour
spikes (i.e. ‘spurs’ and ‘gullies’) which are observed in the B-
field plot.

Plot figure 6(c) shows the electric fields generated inside
the conductor (in the z-direction). The electric field appears
first at the edges, as soon as the screening currents have
completed their reversal in each half cycle (e.g. shortly after
ωt≈ 2π/3). E-fields of opposite polarity occur at each edge,
and decrease linearly towards the centre of the conductor
(figures 6(h), (k) and (n)). The zone containing E-fields of the
same polarity as IDC is always spatially larger than the zone of
opposite polarity on the other side of the tape. Both zones
achieve their maximum area when the magnitude of dBapp/dt
is at a maximum, before then decaying again to zero as Bapp

reaches its positive or negative peak.
The linear profile of ¢Ez across the tape is to be expected

for a fully penetrated sample, as ¶ ¶ = ¶ ¶E x B t.z y/ / How-
ever, this E-field profile challenges the conventional view-
point that the current source applies work only to the central
region of the tape, where the DC transport current is assumed
to flow [3, 14, 22, 34]. Figure 7 shows why this is the case.

Figure 7 illustrates the linear ¢Ez profile across the tape
which occurs at all times in the cycle when flux penetrates
throughout the tape. It is clear that the E-field at one edge of
the tape is significantly larger than other edge, and hence the
net sum of the E-field from both edge regions does not sum to
zero. As a result, the net integrated E-field across the tape
(shown shaded red) extends all the way to the right-hand edge
of the tape. This implies that a DC current source must do
work on currents flowing throughout the red shaded region,
and not just in the central region from x=−iw to +iw (as
described in [3, 9, 22, 34]). This also confirms that it is not
possible to spatially distinguish between the transport current
and screening currents of the same polarity. In fact, the largest
contribution to the dynamic resistance occurs at the
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right-hand edge of the tape in figure 7, contradicting the
conventional assumption that solely screening currents flow
in this edge region.

This observation raises in turn the interesting question as
to why the analytical equations nonetheless yield good esti-
mates of Rdyn, despite being based on the flawed assumption

of a centrally-localised transport current. The reason for this is
that the derivation of equation (1) ultimately requires only
that a quantity of net flux traverses a net total transport cur-
rent, IDC [14]. The differences in equations (2) and (3) relate
to different approaches used to estimate the threshold field,
but the precise location within the tape at which these

Figure 6. Plots (a)–(c) are contour plots of the time dependence of the sheet variables Kz, ¢By and ¢Ez across the width of the conductor,
calculated for two and a half cycles of the applied field. Data is for the SuperPower constant Jc N=200 model with i=0.5, f=118.66 Hz
and Ba0=100 mT. These are shown alongside ΔV in plot (d), and the applied field Bapp(t) in plot (e). Also shown are the instantaneous
profiles across the conductor width for Kz (plots (f)–(l)), ¢By (plots (g)–(m)) and ¢Ez (plots (h)–(n)) at the three moments-in-time indicated by
the dashed lines ωt=0, 2π/3 and 4π/3.
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interactions occur does not affect the resulting analytical
expression.

5.2. Super power interpolated Jc(B, θ) FEM model

The internal fields and currents calculated by the interpolated
Jc(B, θ) model can be visualised in the same fashion as for the
constant Jc model above. This is shown in figure 8, which
also shows the evolution of the sheet critical current KcB in
time and space. Unlike the constant Jc model, Kc now varies
as function of the local field. Modelled data is shown for the
same values of reduced current and applied field amplitude as
were used above (i=0.5 and Ba0=100 mT).

Several different features are apparent in the behaviour of
the currents and fields from the interpolated Jc(B, θ) model,
compared to the constant Jc model for the SuperPower tape.
Plot 8(a) shows the evolution of Kz and we see that in this
case, screening currents running anti-parallel to the transport
current do not occupy a constant width throughout the cycle.
Instead, the maximum penetration width of screening currents
into the tape occurs when Bapp=0 (ωt=mπ), and retreats as
Bapp increases in magnitude. This is because the local KcB

decreases as |Bapp| increases, meaning the transport current
must occupy a wider fraction of the tape, and hence reducing
the remaining space available for opposing screening currents
to flow. As before, the complete erasure of the screening
current distribution from the previous half-cycle coincides
with ΔV increasing rapidly from zero (e.g. dashed line at

ωt=2π/3). We can also see some subtle asymmetries
between the current distributions for the positive and negative
half-cycles of the applied field, which can be understood in
terms of the asymmetric Jc(B, θ) behaviour of the SuperPower
tape shown in plot 2.

Plot figure 8(b) shows the evolution of ¢By within the
conductor and its features are very similar to the constant Jc
model. At the points in the cycle when the screening currents
penetrate furthest into the tape (ωt=mπ), the perpendicular
magnetic field is close to zero over the entire width of the
conductor. This also corresponds to a peak in the local KcB

across the entire cross-section of the conductor—as shown in
plot figure 8(c). The low-field contour spikes in ¢By are also
present for the interpolated Jc(B, θ)model, but exist for a shorter
duration and move outwards to follow the retreating current
reversal zone (between ωt=mπ and ωt=mπ+π/2).

Plot figure 8(d) shows the ¢Ez -fields within the conductor,
calculated using the interpolated Jc(B, θ) model. These
exhibit qualitatively similar behaviour to the constant Jc
model, but there is a clearly noticeable difference to the shape
of the resistive lobes (shown as red in this plot). These now
show the ‘peak splitting’ phenomenon which was previously
observed in the ΔV waveforms (see figures 5(c) and (d)).
Comparing plots figures 8(c)–(e), we see that the local
minima inΔV at ωt=mπ, coincides with the double-humped
shape of the resistive ¢Ez -field lobe. We can now deduce that
the short-lived reduction inΔV is caused by the increase in Kc

(and equivalently Jc) across the tape at this point in the cycle,
which in turn arises because |Bapp| has become sufficiently
small. Equation (9) requires that the increase in local Jc must
deliver a decrease in the electric field required for currents to
flow at this point in the cycle, and hence the local minima
in ΔV.

5.3. SuNAM interpolated Jc(B, θ) FEM model

Figure 9 shows contour plots of the calculated sheet fields and
currents for the SuNAM tape using the interpolated Jc(B, θ)
model. The same conditions are used as for the SuperPower
tape shown in figure 6 (i.e. i=0.5, f=118.66 Hz and
Ba0=100 mT).

We see many of the same gross features are apparent as
are observed for the SuperPower tape, but there are also some
significant differences which arise from the differing Jc(B, θ)
dependences of these two tapes. In particular, the screening
currents shown in plot figure 9(a)) do not show a maximum
penetration width at ωt=mπ. There is also no obvious
asymmetry in the distribution of currents between positive
and negative halves of the oscillating magnetic field.

In figure 9(b) we see that the low field regions near the
current reversal zone persist longer than is the case for
the SuperPower tape, due to the increased shielding from the
larger critical current of the SuNAM tape. This results in a
broadening of the periodic increase in Kc visible in plot
figure 9(c) that occurs when Bapp is close to zero (ωt=mπ).
This broadening ‘smears out’ the effect of the increased Kc,
which results in a less pronounced peak splitting of ¢Ez and
ΔV. It should be noted that this smearing effect occurs even

Figure 7. Illustrative plot showing ¢Ez as a function of position across
the conductor width for the constant Jc (n=200) model when
i=0.5, Ba0=100 mT and ωt=2π. The blue-shaded regions
represent equal and opposite contributions to the spatially averaged
electric field which sum to zero. The red-shaded area shows the net
averaged electric field at this moment in the cycle. Note that the
same linear behaviour is observed in the n=20 model. The dashed
lines show x=±iw.

10

Supercond. Sci. Technol. 33 (2020) 035007 J M Brooks et al



though the SuNAM tape exhibits a substantially stronger
Jc(B, θ) dependence than the SuperPower tape. This empha-
sises the complex nature of these effects, which are only
captured by the detailed finite element model.

6. Scaled constant Jc0 and interpolated Jc(B, θ) plots

A final comparison between constant Jc and interpolated
Jc(B, θ) models is shown in figure 10. Here we compare the

voltage waveform, ΔV(t), obtained from the interpolated
Jc(B, θ) model with the waveforms calculated from two dif-
ferent constant Jc (n=20) models. The first model used is
the Jc=Jc0 model already presented, whilst the second
model sets Jc equal to the minimum value during the cycle,
such that Jc=Jc(Ba0). Figure 10 shows these three models
for both SuperPower and SuNAM tapes for the same ratio of
Bapp/Bth≈6, such that Ba0=60 mT and 150 mT for the
SuperPower and SuNAM cases, respectively (it should be
noted that the 150 mT field simulated here for the SuNAM

Figure 8. Time evolution of the interpolated Jc(B, θ) model for the SuperPower tape. The sheet variables Kz, ¢B ,y KcB and ¢Ez (a)–(d) alongside
ΔV (e) and Bapp(t) (f) are given for two and a half cycles of the applied field. Here i=0.5, f=118.66 Hz and Ba0=100 mT. Also shown
are the instantaneous profiles across the conductor width for Kz (plots (g)–(o)); ¢By (plots (h)–(p)); KcB (plots (i)–(q)); and ¢Ez (plots (j)–(r)), at
the three moments-in-time indicated by the dashed lines ωt=0, 2π/3 and 4π/3.
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tape lies beyond the experimentally accessed conditions
shown in figure 5).

In both cases, we see that the interpolated Jc(B, θ)
waveform is essentially bounded by waveforms obtained
from the two constant Jc models. The interpolated Jc(B, θ)
model predicts the emergence of a non-zero voltage response
at the same time as the constant Jc=Jc(Ba0) model and has
similar peak values. However, in the sections shaded grey, the
interpolated Jc(B, θ) model deviates away from this wave-
form and instead converges to the constant Jc=Jc0 model.

The shaded grey regions denote those times in the cycle
during which Bapp(t)=0±Bth, such that the internal
magnetic field is small. As such, the approximation Jc=Jc0
represents a better description of the situation within the tape
at these times.

Taken in conjunction with the previous analysis from
figures 8 and 9, we therefore conclude that the experimen-
tally-observed peak splitting in ΔV(t) is due to the periodic
increase of Jc(B, θ) across the entire conductor width at those
times in the cycle when Bapp(t) approaches zero.

Figure 9. Time evolution of the interpolated Jc(B, θ) model for the SuNAM tape. The sheet variables Kz , ¢B ,y KcB and ¢Ez (a)–(d) alongside
ΔV (e) and Bapp(t) (f) are given for two and a half cycles of the applied field. Here i=0.5, f=118.66 Hz and Ba0=100 mT. Also shown
are the instantaneous profiles across the conductor width for Kz (plots (g)–(o)), ¢By (plots (h)–(p)), KcB (plots (i)–(q)), and ¢Ez (plots (j)–(r)) at
the three moments-in-time indicated by the dashed lines ωt=0, 2π/3 and 4π/3.
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7. Conclusions

In this paper, a 2D numerical FE model based on the H-
formulation has been used to calculate the transient and DC
dynamic resistance generated in two different coated con-
ductor tapes. These modelling results have been analysed and
compared with experiment.

In terms of the DC values for the dynamic resistance, the
FE model employing a constant Jc with a realistic value of
n=20 significantly underestimate the experimentally mea-
sured values for both the SuperPower and SuNAM tapes. By
contrast, the FE models which include the full Jc(B, θ) and n
(B, θ) dependence of the tapes show excellent agreement.

The limitations of the constant Jc FE model are further
highlighted when the transient time dependent voltage
waveforms are compared with experiment. Contour plot
visualisations of the time-evolution of the sheet currents and
fields within the conductor show a rich variety of features
which vary subtly depending on the applied fields and cur-
rents, and the specific Jc(B, θ) dependence. Only the inter-
polated Jc(B, θ) model is able to reproduce the peak-splitting
effect observed in the experimental transient voltage wave-
forms. This effect arises due to a short-lived increase in the
local critical current at the centre of the tape, caused by the
varying local magnetic field. As the applied field passes
through zero, the critical current at the centre of the tape
reaches a maximum thus reducing the local E-fields
throughout the tape.

It is interesting to note that an FE model approximating
to the critical state (where n is taken to have a highly elevated

value of 200) also shows good agreement with reality. This is
despite the fact that neither the n-value nor Jc used in this FE
model actually correspond to physical reality. Similarly,
analytical equations (1)–(3) (which are derived from critical
state assumptions [3, 9, 22]) also show excellent agreement
with our DC experimental data. A key assumption in the
derivation of the analytical equations is that electrical work is
performed upon a DC transport current which flows solely in
the central region of the tape. However, our FE models show
that resistive electric fields extend to the edge of the tape,
implying that electrical work is being done throughout the
region carrying positive current (i.e. in the same direction as
the DC transport current). A corollary of this observation is
that it is not possible to spatially distinguish between regions
carrying the DC transport current and the screening current
flowing in the same direction.

In light of these observations, it is perhaps surprising that
the analytical equations based on the critical state do produce
such close agreement with the experimental DC values.
However, this can be understood by observing that
equation (1) simply describes the electrical work required in
each cycle to move a net packet of flux across a total DC
transport current. The precise location at which this work is
done is not relevant to the total work. A similar argument
holds for the constant Jc (n=200) FE model, which closely
approximates to the critical state.

However, the different results obtained using the con-
stant Jc (n=20) model are perhaps more puzzling. Follow-
ing the logic above, this implies that the constant Jc FE model
predicts that less flux traverses the tape per cycle as the n-

Figure 10. Comparison of the voltage waveform ΔV for (a) SuperPower and (b) SuNAM tapes from three different models. Two constant Jc
models are considered, both of which employ n=20; Constant Jc =Jc0 in blue and Jc(Ba0) in red. The interpolated Jc(B, θ) model is shown
in black. Ba0 =60 mT in the SuperPower case and 150 mT for the SuNAM data. In both cases, i=0.5.
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value decreases. This suggests that, for the range of exper-
imental conditions examined here, the use of an artificially
inflated n-value (e.g. n=200) approximately compensates
for the errors incurred by assuming a constant Jc=Jc0.
However, it is not clear that this compensating effect will hold
across a broader range of experimental parameters, and
indeed there have been a small number of reported exper-
imental results which are not well described by the analytical
equations, such as those in [12, 16, 33]. As such, it is
expected that the interpolated Jc(B, θ) FE model presented
here should generally deliver more reliable results for a coated
conductor in an arbitrary field, current and geometry.
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