35,348 research outputs found
The Functions and Practices of a Television Network
An Iterative Learning Control disturbance rejection approach is considered and it is shown that iteration variant learning filters can asymptotically give the controlled variable zero error and zero variance. Convergence is achieved with the assumption that the relative model error is less than one. The transient response of the suggested ILC algorithm is also discussed using a simulation example
Phenomenological Constraints on Axion Models of Dynamical Dark Matter
In two recent papers (arXiv:1106.4546, arXiv:1107.0721), we introduced
"dynamical dark matter" (DDM), a new framework for dark-matter physics in which
the requirement of stability is replaced by a delicate balancing between
lifetimes and cosmological abundances across a vast ensemble of individual
dark-matter components whose collective behavior transcends that normally
associated with traditional dark-matter candidates. We also presented an
explicit model involving axions in large extra spacetime dimensions, and
demonstrated that this model has all of the features necessary to constitute a
viable realization of the general DDM framework. In this paper, we complete our
study by performing a general analysis of all phenomenological constraints
which are relevant to this bulk-axion DDM model. Although the analysis in this
paper is primarily aimed at our specific DDM model, many of our findings have
important implications for bulk axion theories in general. Our analysis can
also serve as a prototype for phenomenological studies of theories in which
there exist large numbers of interacting and decaying particles.Comment: 48 pages, LaTeX, 13 figures, 1 tabl
Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates
Controlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester–carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ring-opening copolymerization catalysis, using epoxides coupled with anhydrides or CO2, to produce polyesters and polycarbonates. In particular, the structures and performances of various homogeneous catalysts are presented for the epoxide–anhydride copolymerization. The properties of the resultant polyesters and polycarbonates are presented and future opportunities highlighted for developments of both the materials and catalysts
Photo-response of the conductivity in functionalized pentacene compounds
We report the first investigation of the photo-response of the conductivity
of a new class of organic semiconductors based on functionalized pentacene.
These materials form high quality single crystals that exhibit a thermally
activated resistivity. Unlike pure pentacene, the functionalized derivatives
are readily soluble in acetone, and can be evaporated or spin-cast as thin
films for potential device applications. The electrical conductivity of the
single crystal materials is noticeably sensitive to ambient light changes. The
purpose, therefore, of the present study, is to determine the nature of the
photo-response in terms of carrier activation vs. heating effects, and also to
measure the dependence of the photo-response on photon energy. We describe a
new method, involving the temperature dependent photo-response, which allows an
unambiguous identification of the signature of heating effects in materials
with a thermally activated conductivity. We find strong evidence that the
photo-response in the materials investigated is predominantly a highly
localized heating mechanism. Wavelength dependent studies of the photo-response
reveal resonant features and cut-offs that indicate the photon energy
absorption is related to the electronic structure of the material.Comment: Preprint: 18 pages total,7 figure
Magnetoresistance and magnetic breakdown in the quasi-two-dimensional conductors (BEDT-TTF)MHg(SCN)[M=K,Rb,Tl]
The magnetic field dependence of the resistance of
(BEDT-TTF)MHg(SCN)[M=K,Rb,Tl] in the density-wave phase is explained in
terms of a simple model involving magnetic breakdown and a reconstructed Fermi
surface. The theory is compared to measurements in pulsed magnetic fields up to
51 T. The value implied for the scattering time is consistent with independent
determinations. The energy gap associated with the density-wave phase is
deduced from the magnetic breakdown field. Our results have important
implications for the phase diagram.Comment: 5 pages, RevTeX + epsf, 3 figures. To appear in Physical Review B,
Rapid Communications, September 15, 199
Can One Hear the Shape of a Graph?
We show that the spectrum of the Schrodinger operator on a finite, metric
graph determines uniquely the connectivity matrix and the bond lengths,
provided that the lengths are non-commensurate and the connectivity is simple
(no parallel bonds between vertices and no loops connecting a vertex to
itself). That is, one can hear the shape of the graph! We also consider a
related inversion problem: A compact graph can be converted into a scattering
system by attaching to its vertices leads to infinity. We show that the
scattering phase determines uniquely the compact part of the graph, under
similar conditions as above.Comment: 9 pages, 1 figur
KIC 10449976: discovery of an extreme-helium subdwarf in the Kepler field
Optical spectroscopy of the blue star KIC 10449976 shows that it is an
extremely helium-rich subdwarf with effective temperature T=40000+/-300 K and
surface gravity log g=5.3+/-0.1. Radial-velocity measurements over a five-day
timescale show an upper variability limit of ~50+/-20 km/s. Kepler photometry
of KIC 10449976 in both long and short cadence modes shows evidence for a
periodic modulation on a timescale of ~3.9 days. We have examined the
possibility that this modulation is not astrophysical but conclude it is most
likely real. We discuss whether the modulation could be caused by a low-mass
companion, by stellar pulsations, or by spots. The identification of any one of
these as cause has important consequences for understanding the origin of
helium-rich subdwarfs.Comment: Accepted by MNRA
Medium Modifications of Hadron Properties and Partonic Processes
Chiral symmetry is one of the most fundamental symmetries in QCD. It is
closely connected to hadron properties in the nuclear medium via the reduction
of the quark condensate , manifesting the partial restoration of
chiral symmetry. To better understand this important issue, a number of
Jefferson Lab experiments over the past decade have focused on understanding
properties of mesons and nucleons in the nuclear medium, often benefiting from
the high polarization and luminosity of the CEBAF accelerator. In particular, a
novel, accurate, polarization transfer measurement technique revealed for the
first time a strong indication that the bound proton electromagnetic form
factors in 4He may be modified compared to those in the vacuum. Second, the
photoproduction of vector mesons on various nuclei has been measured via their
decay to e+e- to study possible in-medium effects on the properties of the rho
meson. In this experiment, no significant mass shift and some broadening
consistent with expected collisional broadening for the rho meson has been
observed, providing tight constraints on model calculations. Finally, processes
involving in-medium parton propagation have been studied. The medium
modifications of the quark fragmentation functions have been extracted with
much higher statistical accuracy than previously possible.Comment: to appear in J. Phys.: Conf. Proc. "New Insights into the Structure
of Matter: The First Decade of Science at Jefferson Lab", eds. D.
Higinbotham, W. Melnitchouk, A. Thomas; added reference
Recommended from our members
Self-engineering – Technological Challenges
Engineered products are becoming more complex and need longer lifetime availability; there is a need for new approaches in maintaining, repairing and overhaul (MRO). This paper presents the concept of self-engineering; the aim is to preserve the functions of a product or system and extend its lifetime and automate MRO processes. New developments in self-healing materials, self-reconfiguring electronics and robotics, which are already or could be self-engineering systems, are reviewed. Biological healing and repair mechanisms are discussed as a potential source of inspiration for new self-engineering systems. Examples of biological self-engineering are presented. Key technological challenges and research questions which need to be addressed in future self-engineering research are discussed throughout
- …