
              

City, University of London Institutional Repository

Citation: Roy, R. ORCID: 0000-0001-5491-7437 and Brooks, S. J. ORCID: 0000-0002-
5712-7358 (2020). Self-engineering – Technological Challenges. In: Karabegovic, I. (Ed.), 
New Technologies, Development and Application III (Lecture Notes in Networks and 
Systems). (pp. 16-30). Cham, Switzerland: Springer. ISBN 9783030468163 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/24281/

Link to published version: http://dx.doi.org/10.1007/978-3-030-46817-0_2

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/323990028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


6th International Conference 

„NEW  TECHNOLOGIES,  DEVELOPMENT AND APPLICATION“ NT-2020 

June 25-27. 2020  Sarajevo, Bosnia and Herzegovina 
 

  

Editors: Isak Karabegović, Ahmed Kovačević, Sead Pašić  

 

 

Self-Engineering – Technological Challenges 

 
Rajkumar Roy1, Sam Brooks1

 

1City, University of London, School of Mathematics, Computer Science and Engineering, Northampton Square, 

London, EC1V 0HB, UK 

r.roy@city.ac.uk  

sam.brooks@city.ac.uk 

----------------------------------------------------------------------------------------------------------- -------------------------------- 

ABSTRACT:  
Engineered products are becoming more complex and need longer lifetime availability; there is a need for new 

approaches is maintaining, repairing and overhaul (MRO). This paper presents the concept of self-engineering; 

the aim is to preserve the functions of a product or system and extend its lifetime and automate MRO processes. 

New developments in self-healing materials, self-reconfiguring electronics and robotics, which are already or 

could be self-engineering systems, are reviewed. Biological healing and repair mechanisms are discussed as a 

potential source of inspiration for new self-engineering systems. Examples of biological self-engineering are 

presented. Key technological challenges and research questions which need to be addressed in future self-

engineering research are discussed throughout.  
 

Keywords: Self-engineering, through-life engineering services, repair, maintenance, self-healing  
------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

1. INTRODUCTION   

Everything engineered will eventually break. Maintenance Repair and Overhaul (MRO) services can delay and 

extend product life and fix problems when they occur. However, in some systems, MRO is difficult to 

implement because it is too costly, or systems are inaccessible. This paper presents the concept of a self-

engineering (SE) system that aims to deliver zero-maintenance products. This approach is ambitious but can 

draw on inspiration from existing man-made and biological mechanisms, such as self-healing, self-

reconfiguration, self-adaptation and self-repair. SE can be implemented at a system, sub-system or component 

level, solutions from different levels have been discussed in this paper. However, the authors current work 

focuses mainly of a system level SE solution.  

 

The objective of this paper is to present an overview of current SE methods and technologies relating to MRO. 

Research questions which need to be addressed in future work are presented throughout the paper and offer 

many potential areas of research.  

 

1.1. Overview of Through-Life Engineering Services (TES)  

Servitisation and Product-Service System (PSS) business models require sustained and optimum product 

availability to maximise income. Through-Life Engineering Services (TES) supports this requirement, enabling 

the development and application of PSS and servitization for complex engineering products or systems [1]. 

Monitoring, diagnostics, and prognostics technologies can be used to gather data and knowledge on performance, 

degradation and failures and inform services such as continuous maintenance [2]. When combined with new MRO 

practices, methodologies, and strategies a product (or systems) functional life can be extended and failures 

prevented. TES is especially important for complex interdisciplinary products and services and has a key focus on 

minimising total life-cycle cost [3]. One growing area for TES highlighted in a recent report is to support the 

development of Mobility as a Service (MaaS) [4].  

 

TES is a growing area of research with increasing publications.  SE is a strategy which can fall under TES because 

it can support servitisation and PSS businesses. However, it attempts to automate the processes and remove the 

need for human control from the services. PSS and servitization businesses are a key market which could benefit 

from SE systems.  
 

2. WHAT IS SELF-ENGINEERING?  

2.1. Definition 

A working definition of a self-engineering system is: a system is self-engineering when it registers and responds 

to a loss in function or operation capability, and automatically takes action to return the functionality.  



6th International Conference 

„NEW TECHNOLOGIES DEVELOPMENT AND APPLICATION“ NT-2020 

June 25-27. 2020  Sarajevo, Bosnia and Herzegovina 
 

 

Editors: Isak Karabegović, Ahmed Kovačević, Sead Pašić  

Some key characteristics of a SE system include: 

1. There must be no human/user intervention, and system response/behaviour should be automatic.  

2. It must have the ability to restore or partially restore its lost function(s). 

3. It must be built into the system, not added later when required.  

4. The aim should be to avoid/reduce maintenance, prolong life and/or increase the system robustness. 

The concept of SE systems is not completely new; the concept of a self-maintaining system in software and 

computer science and zero-maintenance in electronics [5] have previously been presented. Many useful 

inspection and repair techniques have already been developed which could be utilised in SE systems [2].  

However, SE aims to encompass a wider range of technologies and initiate collaboration between different 

engineering disciplines.  

 

2.2. Processes involved   

Some of the key stages involved in a SE system are: 

Monitoring: the system has a sensor or procedure that enables it to register a loss of function. 

Trigger: this initiates the SE response, it could be damage, degradation, or a reduction in function or performance. 

Response: this is the action the system takes to restore function or repair itself. 

 

Figure 1 outlines the stages in a biological and engineering SE process. For the engineering response the stages 

have all been demonstrated individually but not combined or inn an automated process [6]. Both examples use a 

similar method to repair material with a fatigue crack. Bioinspired SE is discussed further in Section 4.  
 

2.3. Summary of key methods 

There are several different methods of SE which are referred to in this paper; a definition of them is given here for 

clarity. These definitions change depending on the sector being looked at, for example, electronics systems referred 

to as self-healing in previous literature are actually self-reconfiguring and have been grouped as such in this paper.  

 Self-healing - Self-healing refers to a system which, when a part or assembly is damaged, can return to close 

to its original state. No new parts or components are utilised the original one is 'healed'. 

Figure 1. – Diagram showing key stages of SE process in biology and enineering. The 

biological example shows the process of bone repair. The engineering exmaple shows visual 

inspection, stop-hole crack repair  and laser metal deposition [6].  
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 Self-repairing - Healing requires rehabilitation of components, but a repair can include adding new materials 

or changing the ones already there. The repair does not leave the system in the original state; there may be 

damage patched using other parts. 

 Self-adapting - A system is self-adapting if it can adjust in response to changing conditions or environments 

and maintain/improve its function. Self-folding and self-assembly mechanism can also fall under this 

definition, though they are more specialised self-adapting methods. 

 Self-reconfiguring - A system is capable of changing its arrangement to meet new challenges, component 

damage or preserve its function. It is very similar to self-adapting, though the new system is a different 

configuration or arrangement than the original. 

 Built-in redundancy - A system containing unused parts which the system utilises to replace parts with 

damage or reduced functionality. To utilise these parts, some reconfiguration of the system is often required. 

 Self-sealing - A system can close leaks to prevent things (normally fluid) passing in or out of itself.  

 Self-organising - A system can adapt itself without external direction to meet its needs, there is little or no 

centralised or hierarchical control, which may be observed in other systems. 

 Self-optimising - The system ensures maximum utilisation of resources to meet the system requirements. 

 Self-assembly – The system has the ability to configure from parts into an operating system autonomously.  

 

3. CURRENT TECHNOLOGY 

Many different SE systems exist already, examples of ones found in research papers and patents are shown in 

Table 1. 

3.1. Self-healing materials   

Self-healing is a large and growing area of research. Autonomic self-healing occurs without the need for 

additional stimulus (e.g. no external heat, light or voltage is needed). Non-autonomic systems rely on outside 

stimuli such as heat or light to trigger the self-healing process [7]. Another key division within self-healing 

materials is intrinsic and extrinsic healing property. Intrinsic self-healing materials can heal due to non-covalent 

chemistry or dynamic covalent chemistry [8]. Diels-Alder reactions are frequently used to make intrinsic self-

healing polymers. Key examples of materials with added extrinsic healing properties include the following: 

1. Microcapsules – Capsules containing a liquid healing agent are embedded within or on the surface of a 

material, when capsules are damaged the healing agent is released and solidifies [9].  

2. Vascular - Micro-tubes filled with healing liquid agent are embedded within or on the surface of the 

material. Cracks or damage break the tubes, releasing the healing agent [10].  
3. Shape memory materials (SMM) – Used to make a composite material which contracts when heated, pulling 

cracks closed and making it easier for chemical bonds to reform and heal a crack [11]. However, it requires 

outside stimulus and intrinsic material healing properties to heal fully.  

4. Embedded bacteria – Bacteria is added within concrete material to seal cracks and prevent water ingress by 

creating calcium carbonate [12]. This technology is well developed, with many trials taking place and 

patents filed. 

 

Self-healing metals are much more difficult due to the stronger internal bonding; however, there has been some 

success with metal composites or preserving metal surfaces [13]. A growing area of self-healing materials is the 

textile industry where extending product life is a growing issue. Coating created from proteins found in squid 

can heal material samples using just water [14], this is currently being sold as a commercial product.  

 

Material fatigue, damage, corrosion or deformation, are often the cause of mechanical failures in systems. A self-

healing material can help mitigate against this and keep parts operating for longer, though more work is needed 

on integration into commercial products. Many self-healing materials also have a limited number of operations 

(often only one) which limits their possible applications.  

 

3.2. Self-reconfiguring electronics  

Electronic systems have regularly utilised self-reconfiguration and redundancy (normally together) to make 

fault-tolerant systems. One of the early solutions (from 1980s), was a field programmable gate array (FPGA), 

which contain programmable logic blocks and memory elements which can be re-configured when needed [15]. 

More recently, random-access memory (RAM) devices were repaired by reconfiguration. Data in faulty memory 

cells of a RAM can be stored at new spare addresses and the system self-reconfigures to the address change [16]. 

This is also referred to as built-in self-repair (BISR). 
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MEMS devices are relatively cheap components but form critical parts which are difficult to replace when 

damaged. Designs for a MEMS piezoelectric energy harvester [17], and an accelerometer MEMS device [18] 

have been presented with redundant modules which can reconfigure to account for the loss or damage of other 

modules.  

3.3. Self-repairing systems  

Self-sharpening plough-shears created during the industrial revolution are an early example of a self-repairing 

system [19]. One side of a blade is harder, and one is softer and more vulnerable to erosion, resulting in a 

sharpening mechanism. Bell et al. [20] investigated if a 4-bar linkage mechanisms could be self-repaired to 

maintain close to the original actuation path when one joint was damaged [20]. 

 

Table 1 – Table summarising current self-engineering solutions, the response, how it is initiated and what 

products it has been applied to.  

SE method  Category 

details 

Response 

initiated by 

Response Applied to Ref. 

Self-healing 

Micro-capsules  Damage, cracks 

or wear 

Release healing 

agent 

Polymer and 

concreate 

[9] 

Micro-tubes Damage, cracks 

or wear 

Release healing 

agent 

Polymer 

composites  [10] 
SMM Applied heat Pulls cracks closed Polymer 

composites 

[14], 

[30]  

Embedded 

bacteria 

Damage, cracks 

or wear 

Fills voids in 

material 

Concreate [12], 

[23] 

Stimulus 

triggered 

Applied stimulus  Heal chemical 

bonds 

Polymer 

metals  
[7], 

[8]* 

Self-

reconfiguration 

and Redundancy 

Electrical parts Failure of cell, 

module or 

component 

Reconfigure to 

utilise spares 

modules 

RAM, 

FPGA and 

MEMS  

[15], 
[16] 

Self-

reconfiguration 

Swarm robots Robot removed or 

added  

Reconfigure to 

keep shape 

Swarm 

Robots  
[24], 
[25] 

Self-sharpening Blade Wear on blunt 

blade 

Faster erosion on 

one side 

Ploughshear, 

knifes, tools 
[19], 

[26] 

Self-repairing 4-bar linkage damage to a 

linkage 

Adjustment to 

other links 

- 

[27] 

Self-sealing  Material Small puncture to 

surface  

Expansion or 

movement to 

reseal hole 

Tires and 

pneumatic 

structures [28] 

Self-adapting  

(and self-

modelling) 

Robot Loss or damage 

of limb 

Model, evaluate 

and trial solutions  

Starfish and 

6 legged 

walker  [29] 

Self-adapting 

Robot gripper No solid surface 

to grip 

Flex around the 

object 

Robotic 

hand gripper 

[30], 

[31] 

Escape slide Slide angle too 

shallow or steep 

Inflate/deflate 

segment to adjust 

length 

Aeroplane 

escape slide 

[32] 

Flexible 

antenna  

Antenna receiver 

flexes  

Antenna re-tunes 

to receive signals 

Flexible 

antenna  
[33] 

Self-adapting and 

Self-assembly  

Photomorphog-

enesis 

Light source Growth/adaptation 

towards light 

Robot 

swarms  
[34] 

Self-folding and  

Self-assembly  

Electronics  Heating of joints Expansion and 

folding of joints 

Resistor, 

strain sensor 

and robot 

[35], 

[36] 

           *Review paper of methods 
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Many companies have published patents for self-healing (self-sealing) tires [28]. Other research on making self-

sealing components created a foam coating inspired by the way plants self-seal when cut [37], [38]. Internal 

pressure and a flexible material block holes in the surface.  

 

3.4. Self-adapting robots 

Self-adapting robots aim to adapt to damage or changes in their environment. Self-adapting modular robots have 

been a particular area of interest, with cube and tetrahedral modules used in previous work. A starfish like robot 

(with 4 arms) was taught to move using built-in self-modelling and trial and error; it evaluated different actions 

and distance travelled in each trail to find the best way of moving. Once it learnt how to move the system was 

able to adapt and continue moving when a limb was removed [39]. A similar approach with a six-legged robot 

was tested more recently with optimised algorithms, reducing the time needed to adapt to minutes [29]. Robots 

which could self-adapt have many uses and could operate in harsh environments without the need for human 

intervention, even when damaged. 

 

3.5. Robotic maintenance and inspection 

Robotic inspection, MRO or servicing tasks are research subjects of interest for industry and academics, recent 

work in some industries is outlined below. 

 Ships form a vital role in global trade and require regular inspection of hulls. Currently, ships are removed 

from the water for cleaning, visual inspection and repairs, taking it out of operation for weeks. The 

HISMAR and AURORA projects built fully automated underwater robots, but they were only able to 

perform inspection and basic cleaning duties unaided [40] [41]. 

 Airlines and manufacturers are increasingly looking to automate required inspection, servicing and 

maintenance. A snake-like robot developed by Nottingham University and Rolls Royce was used inspect 

and repair inaccessible areas of engines [42]. Another project, CompInnova, aims to create a robot to move 

around an aircraft’s outer body, inspecting and repairing composite parts [43].  

 Electricity is carried along 1000s of miles of cables, wet cold weather increases the chance of cable 

degradation. LineScout is an automated power line inspection and repair robot which has to be attached to a 

cable but is then able to inspect and re-join lose cables autonomously [44].  

 Wind turbines are growing bigger to facilitate greater efficiency and are moving to more remote locations. 

Drones have previously been utilised for visual inspection of wind turbines [45]. Alternative robots have 

been developed, which can climb the towers or blades to inspect parts closely [46]. The recently funded 

MIMRee and WindTTRo projects in the EU aim to go further and include repair processes in these systems. 

 

Most of these robotic systems employ only visual inspection techniques, repair is often left to a human operator. 

Combining both processes is needed to make SE systems. Repairing a system is much harder and can require 

specialist training, though this could change in the next few years with the growth of artificial intelligence. 

Another key issue is equipment size, making a suitable robot to carry inspection equipment is hard enough, 

adding the weight of tools and repair parts will increase the weight and complexity of the design even further. 

 

4. SELF-ENGINEERING IN BIOLOGY  

Biology is full of excellent examples of SE, only a few examples have been outlined in this section. Table 2 

summarises the SE method used in many biological processes and indicates where this has inspired and been 

utilised in an engineering system.  

 

4.1. Bioinspired and biomimicry design process  

There are two key approaches to create biomimicry and bioispired solutions.  

Top-down (or problem-driven) - This approach begins with an engineering problem. Biological systems are 

searched for a suitable role-model; the search could focus on looking for a particular function, feature or process. 

Once an appropriate role model has been identified, this can then be investigated further and applied to solve the 

problem. Bottom-up (or solution-driven) - This approach starts with a biological solution and looks closely at 

behaviour, response, functions and mechanism involved. A particular solution is identified, investigated further 

and extrapolated. Finally, there is a search for an engineering problem to apply the solution to. 

 

Both approaches are useful and can be utilised for different aspects of a product’s design, Flectofin is an example 

of this [47]. It can often be difficult to replicate all biological mechanism as some will only work on a smaller 

scale and not the scale required by engineers [48]. 
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Table 2 – Summary table of some biological self-engineering systems and methods used. Where the system has 

been utilised in a product (bioinspired) it has been indicated.  Green boxes indicated methods used.  

 

Organism Description 

Self-engineering method used 

U
ti

li
se

d
 i

n
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in

sp
ir

ed
 

p
ro

d
u

ct
 

Ref. S
el

f-
h
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n
g

 

S
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f-
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p
a
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S
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f-
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n
g

 

S
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R
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u
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S
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n
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g

u
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n
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S
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p
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m
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g

 

S
el

f-
sh

a
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en
in

g
 

S
el

f-
a

ss
em

b
ly

 

Human  

Skin healing process                     Yes [49] 

Blood vessels 

constriction                      No [50] 

Kidney redundancy                     No [51] 

Bone repair process                     No [52] 

Neurons (synaptic 

plasticity)                      No [53] 

Sea 

creatures  

Sea urchin teeth                      No [54] 

Molluscs shell layers 

structure                     Yes [55] 

Moon jellyfish re-

organise limbs                     No [56] 

Plants  

Seed capsules 

expand/open in water                     Yes [57] 

Photomorphogenesis                      Yes [34] 

Stem wound sealing 

with latex                     Yes 

[58], 

[59] 

Internal cell sealing 

mechanism                     Yes 

[37], 

[60] 

Pre-tensioned 

structure for wound 

sealing                      Yes [61] 

Regeneration from 

cutting                     No [62] 

a) 

Figure 2. – Diagram of bioinspired methods of self-helaing; a) shows vascuar micro-tubes used to 

self-heal a crack, with healing agent in red (see [10] for more information); b) shows a block and 

mortar stucture inspired by mollusc shell with breakable bonds which can be repaired when force is 

removed, see [55] for more informaiton. 

 

b) 
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4.2. Examples of biology inspired SE work  
Biology has inspired many SE mechanisms, some of these are listed below. 

 Photomorphogenesis, the growth and movement of plants towards light, was mimicked with a robotic 

swarm creating a light-responsive, self-assembly and self-adapting mechanism [34]. 

 Vascular structures used in our bodies inspired a self-healing polymer composite with hollow glass fibres 

which released a healing agent when damaged [10], see Figure 2 a) for a diagram.  

 Mollusc shells, inspired a self-healing polymer and glass brick composite. Sacrificial healable bonds 

between layer allowed the structure to deform and return to its original shape [55], see Figure 2 b) for a 

diagram. 

 Delosperma cooperi plants (see Figure 3. a)) have pre-tensioned structures which self-seal wounds in the 

plant, to prevent water being lost. Shape memory materials were used to replicate the effect in a composite 

material [61].  

 Hardide coating has been applied to knives and tool blades to make them self-sharpening, it was inspired by 

sharks and sea urchin teeth (see Figure 3. b)) which have a softer and harder side [54]. However, a similar 

mechanism was invented earlier with self-sharpening plough shears, without bio inspiration. 

Biology can inspire many innovative new products and solutions, but designers should be careful as biology is 

not always the optimum solution. Nature does not contain wheels or gears, but they have been a vital engineering 

component for hundreds of years.  

5. TECHNOLOGICAL CHALLENGES AND RESEARCH QUESTIONS 

There are many challenges and research opportunities with SE systems. Some of the key research questions 

which need addressing in future work are outlined in this section. Subheadings are the key stages in a SE system 

outlined in Section 2.2.  

 

5.1. Monitoring 

 Where should the monitoring be built-in to a component or added to the system? For a new product it could 

be built-in but existing system need monitoring which can be added on.  

 What should be monitored, and why? Only critical functions or all functions and operations? 

 Should monitoring be continuous, intermittent or based on the age of a product? 

 How can monitoring take place without interfering with the products function? 

5.2. Trigger  

 Products will continuously degrade and lose function throughout their life at what point should SE be 

triggered? 

 Can the trigger be reset or repeated, does it occur only once? 

 Should there be different levels of a trigger? For example, should it be a binary yes-no response or should it 

be a scale 1 to 10 based on severity? 

 How do you verify if the trigger is correct? 

 What other back up sensors can you use to verify the initial trigger? 

 Does the trigger determine the SE method used, how is it chosen? Is the chosen SE response the best one? 

 If a trigger is not verified, should the system return to the monitoring stage? Should monitoring be 

increased, is there a risk of a genuine trigger being missed? 

a) b) 

Figure 3. – Two sources of biological inspiration for SE systems.  A) Delosperma cooperi  plants leaves 

which bend to self-seal when cut due to pre-tension, © 2018 Speck et al.; licensee Beilstein-Institut [61];. 

B) Close up picture of self-sharpening sea urchin teeth, reproduced with permision from  [64]. 
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5.3. Response 

 How is the best response chosen? Can previous SE actions, updates and upgrades be taken into account? 

 The response needs to account for factors such as available resources, time, damage severity. How are these 

best monitored or recorded in the system? 

 When should the response be implemented, can all operations be paused if needed? Is the system vulnerable 

during the implementation of the response? 

 What is the best was to utilised and transported resourced where needed? 

 Is the system stable and functionality fully or partially restored by the SE response? 

 Was the SE response appropriate, is a further response or adjustment required? 

 

6. EVOLUTION OF SELF-ENGINEERING 

6.1. Evolving automatic control (Industry 4.0) 

Many systems utilise automated monitoring to help predict when maintenance is required as part of Industry 4.0 

[63].  To create successful SE systems further work is needed to automate all the stages. Automating many repair 

processes which are dependent on human experience and training is a significant challenge and one that needs to 

be addressed for SE systems to be realised.  

 

6.2.  Evolving beyond automatic control  

In some systems, the trigger for the SE mechanism starts the repair response without any processing; a good 

example is microcapsules and vascular materials discussed in Section 3.1. These systems have the advantage of 

requiring no decision making or processing and can occur reactively. Currently, most human-made SE systems 

require some form of control to help determine when it should be implemented. Reducing the need for control in 

the system could have many benefits, such as reducing the complexity and cost of running a SE system. However, 

it could mean that SE responses have to be limited to one method and a system would not develop or change to 

meet new challenges. 

 

7. SUMMARY 

In summary, there is a need for significant and long-term research to create complete SE systems with zero-

maintenance. They could greatly benefit s safety-critical, inaccessible and productivity-critical systems. Many 

different techniques are being developed to identify material degradation and enable predictions of failure 

automatically. Alongside this, there has been significant developments in some SE response methods, such as 

self-healing materials and self-reconfigurable electronics. Considerable research is still needed outside these 

areas especially combining automated monitoring and automated MRO tasks. The sectors with the most well-

developed SE solutions are electrical and computer systems.  

 

Biological systems can provide a source of inspiration for SE mechanisms or methods and have already inspired 

developments in robotics and self-healing materials. Even some human made solutions designed without 

biological inspiration share similar characteristics, as shown in Figure 1. It should also be noted that biological 

systems are often not limited to one SE method, while human made ones are and could potentially benefit from 

utilising multiple methods.  

 

SE systems are likely to be most useful in high value industries where a servitisation or PSS business model is 

utilised. Identifying what parts or sub-systems should be made SE is another challenge which could be helped by 

utilising techniques used in continuous maintenance services, such as degradation mechanics, monitoring 

diagnostics and prognostics, and repair mechanics.  
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