5,416 research outputs found

    P17. P3b event-related potentials show changes in varsity football players due to accumulated sub-concussive head impacts

    Get PDF
    BACKGROUND: Concussion has been a focus in football at all levels of participation. However, there is a growing appreciation that repetitive sub-concussive impacts may have more significant effects on overall neurological health than the isolated diagnosed concussions that have been the focus of recent research. The purpose of this study was to evaluate the relationship between the number of head impacts that players experience throughout the season and their P300 evoked potential. METHODS: Canadian university football players (n=45) were separated into three groups based on player mass and position/skill (small-skilled, big-skilled and big-unskilled). Groups were separated into low and high levels of impact exposure based on the total number of head impacts experienced in-season. Players completed baseline, midseason, postseason, and follow-up neurophysiological tests to measure P300 evoked potentials. Statistically significant differences between high versus low impact subgroups for each player group were assessed using independent-samples t-tests. RESULTS: Small-skilled and big-skilled players showed statistically significant decreases in P300 amplitude at midseason and postseason for high impact players compared to low impact players. Follow-up measures revealed that all groups were not significantly different compared to baseline measures. DISCUSSION & CONCLUSION: Players that experience a large number of head impacts in varsity football demonstrate significant decreases in specific EEG measures of cognitive function and information processing. INTERDISCIPLINARY REFLECTION: The combination of biomechanical head impact exposure with neurophysiological outcomes yields insight into the processes behind head impacts and their effects on the human brain

    Case Notes

    Get PDF

    A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers.

    Get PDF
    Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH) from prostate cancer (CaP). To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total), prostatic acid phosphatase, carbonic anhydrase 1 (CA1), osteonectin, IL-6 soluble receptor (IL-6sr), and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation--the area under the curve was 0.84 with a p value below 10(-6). Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair

    Discovering the True Chrysoperla carnea (Insecta: Neuroptera: Chrysopidae) Using Song Analysis, Morphology, and Ecology

    Get PDF
    What was once considered a single Holarctic species of green lacewing, Chrysoperla carnea (Stephens), has recently been shown to be a complex of many cryptic, sibling species, the carnea species group, whose members are reproductively isolated by their substrate-borne vibrational songs. Because species in the complex are diagnosed by their song phenotypes and not by morphology, the current systematic status of the type species has become a problem. Here, we attempt to determine which song species corresponds to Stephens' 1835 concept of C. carnea, originally based on a small series of specimens collected in or near London and currently housed in The Natural History Museum. With six European members of the complex from which to choose, we narrow the field to just three that have been collected in England: C. lucasina (Lacroix), Cc2 ‘slow-motorboat', and Cc4 ‘motorboat'. Ecophysiology eliminates C. lucasina, because that species remains green during adult winter diapause, while Cc2 and Cc4 share with Stephens' type a change to brownish or reddish color in winter. We then describe the songs, ecology, adult morphology, and larval morphology of Cc2 and Cc4, making statistical comparisons between the two species. Results strongly reinforce the conclusion that Cc2 and Cc4 deserve separate species status. In particular, adult morphology displays several subtle but useful differences between the species, including the shape of the basal dilation of the metatarsal claw and the genital ‘lip' and ‘chin' of the male abdomen, color and coarseness of the sternal setae at the tip of the abdomen and on the genital lip, and pigment distribution on the stipes of the maxilla. Furthermore, behavioral choice experiments involving playback of conspecific versus heterospecific songs to individuals of Cc2 and Cc4 demonstrate strong reproductive isolation between the two species. Comparison of the adult morphology of song-determined specimens to that of preserved specimens in the original type series and in other collections in The Natural History Museum, London, indicate that the ‘true' Chrysoperla carnea (Stephens) is Cc4. Cc2 cannot be confidently associated with any previously described species and is therefore assigned a new name, Chrysoperla pallida sp. nov., and formally describe

    Hybrid Corn Strains Recommended for 1956

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
    corecore