3,818 research outputs found

    Singing from the Grave: DNA from a 180 Year Old Type Specimen Confirms the Identity of Chrysoperla carnea (Stephens)

    Get PDF
    Copyright: © 2015 Price et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry

    Get PDF
    The use of fermented liquid feeds in monogastric animal nutrition is regarded as one of the biosafe methods of animal production. This paper examines bacterial fermentation of feed substrates for production of fermented liquid feeds for pigs and moist feeds for poultry. Emphasis is placed on the interplay of factors affecting feed fermentation and their relationship to feed quality. The resistance of fermented feeds to enteropathogenic contamination prior to feeding and their potential contribution to African agriculture is highlighted

    Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors

    Get PDF
    The single crystal X-ray structure of the all-axial conformer of the (R,R,R,R) enantiomer of the chiral donor tetramethyl-BEDT-TTF (TM-BEDT-TTF) was described and compared to the all-equatorial conformer. (S,S,S,S)-Tetramethyl-BEDT-TTF formed crystalline 1 : 1 complexes with TCNQ and TCNQ-F4, as well as a THF solvate of the TCNQ complex. Donors bis((2S,4S)-pentane-2,4-dithio)tetrathiafulvalene and (ethylenedithio)((2S,4S)-pentane-2,4-dithio)tetrathiafulvalene, which contain seven-membered rings bearing chirally oriented methyl groups, only formed complexes with TCNQ-F4. The TCNQ-F4 complexes contain planar organosulfur systems, in contrast to the TCNQ complexes in which there is minimal charge transfer. A variety of crystal packing modes were observed. Electrocrystallization experiments with both enantiomers and the racemic form of tetramethyl-BEDT-TTF afforded mixed valence radical cation salts with the AsF6 and SbF6 anions formulated as (TM-BEDT-TTF)2XF6 (X = As, Sb). Electrical conductivity was only found in one charge transfer complex, while the radical cation salts are all semiconducting

    Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts

    Get PDF
    The syntheses of a range of enantiopure organosulfur donors with hydrogen bonding groups are described including TTF related materials with two, four, six and eight hydroxyl groups and multiple stereogenic centres and a pair of chiral N-substituted BEDT-TTF acetamides. Three charge transfer salts of enantiopure poly-hydroxy-substituted donors are reported, including a 4:1 salt with the meso stereoisomer of the dinuclear [Fe2(oxalate)5 ]4- anion in which both cation and anion have chiral components linked together by hydrogen bonding, and a semiconducting salt with triiodide

    UHRF: spectral resolution to the limit

    Get PDF
    Until recently the study of cool clouds of interstellar matter had been limited by the relatively low spectral resolutions provided by existing spectrographs. The Ultra-High-Resolution Facility (UHRF) recently commissioned at the Anglo-Australian Telescope has changed dramatically this panorama by delivering for the first time resolutions approaching one million, near the diffraction limit of the largest echelle gratings available. The instrument shares the east coude room with the University College London Echelle Spectrograph, in what is now one of the most powerful spectrographic installations worldwide. This contribution describes the characteristics of the UHRF, including its design, manufacture, testing, and commissioning. The UHRF incorporates a novel image slicer (described elsewhere in these proceedings), which allows ultra-high-resolution observations on faint objects. Astrophysical results from the first observing runs are presented to demonstrate the UHRF performance in both resolution and throughput

    The future of canine glaucoma therapy

    Full text link
    Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO‐VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP‐lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151896/1/vop12678_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151896/2/vop12678.pd

    Photon CT Scanning of Advanced Ceramic Materials

    Get PDF
    Advanced ceramic materials (e. g. Si3N4, ZrO2, SiC, A12O3) are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems [1]. Although fracture toughness has been a constant problem, advanced ceramics are now being developed with fracture toughnesses close to those of metals [2]. Small size flaws (10–200 ÎŒm), small non-uniformities in density distributions (0.1–2%) present as long-range density gradients, and porous regions which can be seen as localized areas of slightly lower density, are critical in most ceramics. The need to detect these small flaws is causing a significant effort to be devoted towards nondestructive evaluation. Detection of “defects” such as those noted in engineering ceramics has presented problems for conventional non-destructive evaluation methods [3]
    • 

    corecore