3,223 research outputs found

    Cal Poly SAE Formula Electric Chassis

    Get PDF
    The Cal Poly Formula Electric team has been in need of a chassis redesign, making that a logical choice for a senior project. The original goal of the project was to build the lightest possible frame while still maintaining adequate strength and stiffness. The existing frame made a good starting point. The steel tube spaceframe weighed a colossal 105 lb. There was ample room for improvement, even with a similar spaceframe design. The greatest potential to reduce weight lay in submitting designs under the Alternative Frame (AF) rule set. This could avoid the added weight of many required tubes. The new 2014-15 rules introduced more strict requirements for tube sizes used in alternative frames. These new requirements effectively eliminated any advantage in building a steel tube frame under AF rules, making the developing chassis design no longer viable. In response to the rule changes, possibilities were reevaluated and a cut-and-fold carbon composite monocoque was chosen as a good alternative to the steel tube design. This new design direction promised significant weight savings while maintaining the strength required to pass the tests set out in the AF rules. The primary body of the frame began as flat panels of 3/4” 3-ply carbon composite that was then cut to the desired outline and folded into shape. These folds were reinforced with a wet layup using carbon tape and the resin, and filled with glass micro-spheres in order to reduce the weight of the resin used. This folded panel was bolted to the front and main roll hoops. The roll hoops were still steel tubes, as this was required by any rule set. Various properties were tested along the way in order to properly document chassis construction and justify FEA analysis to the FSAE officials. Most of these tests were destructive material tests on the composite panels themselves. All major subsystems except the battery box were carried over from the existing car to the new one. The suspension, drivetrain, and space for the new battery box were all part of the design from the beginning for a seamless transition from one chassis to the next. Once the monocoque was completed, the other systems were simply assembled into it. Once the entire car was assembled, the final tests for the chassis were to be passing technical inspection and performance at competition. Since the team was unable to get into the competition from the waitlist, this was not possible. Final design validation, instead, came from a technical inspection performed by Professor Fabijanic before the car was driven and from driver feedback

    Multiple Light Signaling Pathways Control Solar Tracking in Sunflowers

    Get PDF
    Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways

    Long Term Benefits for Women in a Science, Technology, Engineering, and Mathematics Living-Learning Community

    Get PDF
    Science, technology, engineering and math (STEM) degrees provide opportunities for economic mobility. Yet women, underrepresented minority (URM), and first-generation college students remain disproportionately underrepresented in STEM fields. This study examined the effectiveness of a living-learning community (LLC) for URM and first-generation first-year women interested in STEM. The authors utilized a matched sample post-hoc analysis to examine undergraduate and graduate degree attainment in science related fields for women who participated in the Women in Science Residence Program (WISERP) LLC compared to matched controls. The control group was matched on twelve characteristics that are associated with retention in STEM. First-generation college students in the LLC were significantly more likely to receive an undergraduate degree in science; URM students were more likely to receive an undergraduate degree in a science related field, nearly three times as likely to receive a master’s degree in science and more than three times as likely to receive a graduate degree in science compared to their matched controls. The results indicate that a one-year intervention can meaningfully impact persistence of at-risk populations in attaining STEM bachelor’s degrees and in enrolling in STEM graduate programs and invite further investigation into the factors contributing to the beneficial impact of LLCs

    Designing Learning Environments to Foster Affective Learning: Comparison of Classroom to Blended Learning

    Get PDF
    Affective learning is a key dimension of health professional education and involves teaching topics such as empathy or grief that impact student attitudes and beliefs to prepare them to be novice practitioners. The move in higher education toward online and blended learning (a mix of online and traditional, classroom-based learning) disrupts traditional approaches to teaching professional affect, which is heavily reliant on instructor modeling. This paper documents insight into the redesign process of a course, Professional Identity: Behaviors and Attitudes, from a traditional to a blended learning format, with a focus on affective learning. This study employed a survey approach to compare classroom and online student perceptions of learning across the seven affective topics of the course. The study also examined the contribution of various technology-enhanced learning activities to the students\u27 perceptions of learning. Twenty-five classroom students and 64 blended learning students indicated that while both formats increased students’ perceived understanding of topics related to affective learning, the blended learning group perceived a significantly greater understanding in four affective topic areas. Furthermore, blended learning students cited reading, online discussions, and unstructured out-of-classroom discussions as contributing to their learning significantly more than the classroom group

    Assessing the prevalence of autoimmune, endocrine, gynecologic, and psychiatric comorbidities in an ethnically diverse cohort of female fibromyalgia patients: does the time from hysterectomy provide a clue?

    Get PDF
    Background: This retrospective chart review investigated differences in the prevalence of medical comorbidity between women with fibromyalgia (FM) (n=219) and a control group women with chronic pain (CP) without FM (n=116). The specific aims were to compare the prevalence of autoimmune, psychiatric, endocrine, gynecologic pathology, the relationship between timing of gynecologic surgery, and pain onset. We additionally sought to compare the number of comorbidities in an ethnically diverse cohort. Methods: This was a retrospective chart review of patients seen in FM or CP clinics at an academic medical center in 2009–2010. Results: Logistic regression modeling found that gynecologic, endocrine, and autoimmune diagnoses were independently associated with a diagnosis of FM. Detailed analyses showed that thyroid disease (P\u3c0.01) and gynecologic surgery (P\u3c0.05) were significantly more common in FM. Women with FM were more likely to have multiple autoimmune, endocrine, gynecologic, or psychiatric pathologies. A relationship was observed between the timing of gynecologic surgery and pain onset in FM, with more surgeries observed in the years just prior to pain onset or in the year after pain onset. A similar pattern was not found in the control group. Conclusion: This study demonstrates that autoimmune, endocrine, and gynecologic pathologies occur more commonly in women with FM than in those with CP, which is consistent with findings in less ethnically diverse samples. Moreover, a relationship was found between timing of pain onset and gynecologic surgery. A larger prospective study of the relationship between gynecologic surgery and pain onset in FM is warranted

    The influence of barefoot and barefoot inspired footwear on the kinetics and kinematics of running in comparison to conventional running shoes.

    Get PDF
    Barefoot running has experienced a resurgence in footwear biomechanics literature, based on the supposition that it serves to reduce the occurrence of overuse injuries in comparison to conventional shoe models. This consensus has lead footwear manufacturers to develop shoes which aim to mimic the mechanics of barefoot locomotion. This study compared the impact kinetics and 3-D joint angular kinematics observed whilst running: barefoot, in conventional cushioned running shoes and in shoes designed to integrate the perceived benefits of barefoot locomotion. The aim of the current investigation was therefore to determine whether differences in impact kinetics exist between the footwear conditions and whether shoes which aim to simulate barefoot movement patterns can closely mimic the 3-D kinematics of barefoot running. Twelve participants ran at 4.0 m.s-1±5% in each footwear condition. Angular joint kinematics from the hip, knee and ankle in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. In addition simultaneous tibial acceleration and ground reaction forces were obtained. Impact parameters and joint kinematics were subsequently compared using repeated measures ANOVAs. The kinematic analysis indicates that in comparison to the conventional and barefoot inspired shoes that running barefoot was associated significantly greater plantar-flexion at footstrike and range of motion to peak dorsiflexion. Furthermore, the kinetic analysis revealed that compared to the conventional footwear impact parameters were significantly greater in the barefoot condition. Therefore this study suggests that barefoot running is associated with impact kinetics linked to an increased risk of overuse injury, when compared to conventional shod running. Furthermore, the mechanics of the shoes which aim to simulate barefoot movement patterns do not appear to closely mimic the kinematics of barefoot locomotion

    Clinical Remission in Severe Asthma : A Pooled Post hoc Analysis of the Patient Journey with Benralizumab

    Get PDF
    Funding This study, the Rapid Service Fee, and the Open Access Fee were funded by AstraZeneca (Gaithersburg, MD, USA).Peer reviewedPublisher PD
    corecore