86 research outputs found

    Apathy, but not depression, is associated with executive dysfunction in cerebral small vessel disease.

    Get PDF
    OBJECTIVE: To determine the prevalence of apathy and depression in cerebral small vessel disease (SVD), and the relationships between both apathy and depression with cognition. To examine whether apathy is specifically related to impairment in executive functioning and processing speed. METHODS: 196 patients with a clinical lacunar stroke and an anatomically corresponding lacunar infarct on MRI were compared to 300 stroke-free controls. Apathy and depression were measured using the Geriatric Depression Scale, and cognitive functioning was assessed using an SVD cognitive screening tool, the Brief Memory and Executive Test, which measures executive functioning/processing speed and memory/orientation. Path analysis and binary logistic regression were used to assess the relation between apathy, depression and cognitive impairment. RESULTS: 31 participants with SVD (15.8%) met criteria for apathy only, 23 (11.8%) for both apathy and depression, and 2 (1.0%) for depression only. In the SVD group the presence of apathy was related to global cognition, and specifically to impaired executive functioning/processing speed, but not memory/orientation. The presence of depression was not related to global cognition, impaired executive functioning/processing speed or memory/orientation. CONCLUSIONS: Apathy is a common feature of SVD and is associated with impaired executive functioning/processing speed suggesting the two may share biological mechanisms. Screening for apathy should be considered in SVD, and further work is required to develop and evaluate effective apathy treatment or management in SVD.This work was supported by a Priority Program Grant from the Stroke Association (TSA PPA 2015-02; www.stroke.org.uk). The BMET Study was supported by a grant from the Stroke Association (TSA2008/10). Valerie Lohner is supported by a Stroke Association/British Heart Foundation Program Grant (TSA BHF 2010/01; www.bhf.org.uk). Rebecca Brookes is supported by a BHF Project Grant (PG/13/30/30005). Recruitment to the BMET Study was supported by the English National Institute of Health Research (NIHR) Clinical Stroke Research Network (www.crn.nihr.ac.uk/stroke). Hugh Markus is supported by an NIHR Senior Investigator award (www.nihr.ac.uk) and his work is supported by the Cambridge University Hospital Comprehensive NIHR Biomedical Research Unit (www.cambridge-brc.org.uk)

    Brief Screening of Vascular Cognitive Impairment in Patients With Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy Without Dementia.

    Get PDF
    BACKGROUND AND PURPOSE: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic form of cerebral small vessel disease leading to early-onset stroke and dementia, with younger patients frequently showing subclinical deficits in cognition. At present, there are no targeted cognitive screening measures for this population. However, the Brief Memory and Executive Test (BMET) and the Montreal Cognitive Assessment (MoCA) have shown utility in detecting cognitive impairment in sporadic small vessel disease. This study assesses the BMET and the MoCA as clinical tools for detecting mild cognitive deficits in CADASIL. METHODS: Sixty-six prospectively recruited patients with CADASIL, and 66 matched controls completed the BMET, with a subset of these also completing the MoCA. Receiver operating characteristic curves were calculated to examine the sensitivity and specificity of clinical cutoffs for the detection of vascular cognitive impairment and reduced activities of daily living. RESULTS: Patients with CADASIL showed more cognitive impairment overall and were poorer on both executive/processing and memory indices of the BMET relative to controls. The BMET showed good accuracy in predicting vascular cognitive impairment (85% sensitivity and 84% specificity) and impaired instrumental activities of daily living (92% sensitivity and 77% specificity). The MoCA also showed good predictive validity for vascular cognitive impairment (80% sensitivity and 78% specificity) and instrumental activities of daily living (75% sensitivity and 76% specificity). The most important background predictor of vascular cognitive impairment was a history of stroke. CONCLUSIONS: The results indicate that the BMET and the MoCA are clinically useful and sensitive screening measures for early cognitive impairment in patients with CADASIL.Stroke Association (Grant ID: TSA2008/10), British Heart Foundation (Grant ID: PG/13/30/30005), Stroke Association/British Heart Foundation (Grant ID: TSA BHF 2010/01), Agency for Science, Technology and Research, Singapore, National Institute for Health Research (Senior Investigator award), Cambridge University Hospital Comprehensive National Institute for Health Research Biomedical Research UnitThis is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1161/STROKEAHA.116.01376

    Pattern and Rate of Cognitive Decline in Cerebral Small Vessel Disease: A Prospective Study.

    Get PDF
    OBJECTIVES: Cognitive impairment, predominantly affecting processing speed and executive function, is an important consequence of cerebral small vessel disease (SVD). To date, few longitudinal studies of cognition in SVD have been conducted. We determined the pattern and rate of cognitive decline in SVD and used the results to determine sample size calculations for clinical trials of interventions reducing cognitive decline. METHODS: 121 patients with MRI confirmed lacunar stroke and leukoaraiosis were enrolled into the prospective St George's Cognition And Neuroimaging in Stroke (SCANS) study. Patients attended one baseline and three annual cognitive assessments providing 36 month follow-up data. Neuropsychological assessment comprised a battery of tests assessing working memory, long-term (episodic) memory, processing speed and executive function. We calculated annualized change in cognition for the 98 patients who completed at least two time-points. RESULTS: Task performance was heterogeneous, but significant cognitive decline was found for the executive function index (p<0.007). Working memory and processing speed decreased numerically, but not significantly. The executive function composite score would require the smallest samples sizes for a treatment trial with an aim of halting decline, but this would still require over 2,000 patients per arm to detect a 30% difference with power of 0.8 over a three year follow-up. CONCLUSIONS: The pattern of cognitive decline seen in SVD over three years is consistent with the pattern of impairments at baseline. Rates of decline were slow and sample sizes would need to be large for clinical trials aimed at halting decline beyond initial diagnosis using cognitive scores as an outcome measure. This emphasizes the importance of more sensitive surrogate markers in this disease.This work was supported by the Wellcome Trust [grant number 081589] and Alzheimer's Research UK [grant number ARUK-PG2013-2].This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.013552

    Mnemonic function in small vessel disease and associations with white matter tract microstructure.

    Get PDF
    Cerebral small vessel disease (SVD) is associated with deficits in working memory, with a relative sparing of long-term memory; function may be influenced by white matter microstructure. Working and long-term memory were examined in 106 patients with SVD and 35 healthy controls. Microstructure was measured in the uncinate fasciculi and cingula. Working memory was more impaired than long-term memory in SVD, but both abilities were reduced compared to controls. Regression analyses found that having SVD explained the variance in memory functions, with additional variance explained by the cingula (working memory) and uncinate (long-term memory). Performance can be explained in terms of integrity loss in specific white matter tract associated with mnemonic functions

    Change in multimodal MRI markers predicts dementia risk in cerebral small vessel disease.

    Get PDF
    OBJECTIVE: To determine whether MRI markers, including diffusion tensor imaging (DTI), can predict cognitive decline and dementia in patients with cerebral small vessel disease (SVD). METHODS: In the prospective St George's Cognition and Neuroimaging in Stroke study, multimodal MRI was performed annually for 3 years and cognitive assessments annually for 5 years in a cohort of 99 patients with SVD, defined as symptomatic lacunar stroke and confluent white matter hyperintensities (WMH). Progression to dementia was determined in all patients. Progression of WMH, brain volume, lacunes, cerebral microbleeds, and a DTI measure (the normalized peak height of the mean diffusivity histogram distribution) as a marker of white matter microstructural damage were determined. RESULTS: Over 5 years of follow-up, 18 patients (18.2%) progressed to dementia. A significant change in all MRI markers, representing deterioration, was observed. The presence of new lacunes, and rate of increase in white matter microstructural damage on DTI, correlated with both decline in executive function and global functioning. Growth of WMH and deterioration of white matter microstructure on DTI predicted progression to dementia. A model including change in MRI variables together with their baseline values correctly classified progression to dementia with a C statistic of 0.85. CONCLUSIONS: This longitudinal prospective study provides evidence that change in MRI measures including DTI, over time durations during which cognitive change is not detectable, predicts cognitive decline and progression to dementia. It supports the use of MRI measures, including DTI, as useful surrogate biomarkers to monitor disease and assess therapeutic interventions

    Apathy is associated with large-scale white matter network disruption in small vessel disease.

    Get PDF
    OBJECTIVE: To investigate whether white matter network disruption underlies the pathogenesis of apathy, but not depression, in cerebral small vessel disease (SVD). METHODS: Three hundred thirty-one patients with SVD from the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) study completed measures of apathy and depression and underwent structural MRI. Streamlines reflecting underlying white matter fibers were reconstructed with diffusion tensor tractography. First, path analysis was used to determine whether network measures mediated associations between apathy and radiologic markers of SVD. Next, we examined differences in whole-brain network measures between participants with only apathy, only depression, and comorbid apathy and depression and a control group free of neuropsychiatric symptoms. Finally, we examined regional network differences associated with apathy. RESULTS: Path analysis demonstrated that network disruption mediated the relationship between apathy and SVD markers. Patients with apathy, compared to all other groups, were impaired on whole-brain measures of network density and efficiency. Regional network analyses in both the apathy subgroup and the entire sample revealed that apathy was associated with impaired connectivity in premotor and cingulate regions. CONCLUSIONS: Our results suggest that apathy, but not depression, is associated with white matter tract disconnection in SVD. The subnetworks delineated suggest that apathy may be driven by damage to white matter networks underlying action initiation and effort-based decision making

    Development of immunohistochemistry and in situ hybridisation for the detection of SARS-CoV and SARS-CoV-2 in formalin-fixed paraffin-embedded specimens

    Get PDF
    The rapid emergence of SARS-CoV-2, the causative agent of COVID-19, and its dissemination globally has caused an unprecedented strain on public health. Animal models are urgently being developed for SARS-CoV-2 to aid rational design of vaccines and therapeutics. Immunohistochemistry and in situ hybridisation techniques that facilitate reliable and reproducible detection of SARS-CoV and SARS-CoV-2 viral products in formalin-fixed paraffin-embedded (FFPE) specimens would be of great utility. A selection of commercial antibodies generated against SARS-CoV spike protein and nucleoprotein, double stranded RNA, and RNA probe for spike genes were evaluated for the ability to detect FFPE infected cells. We also tested both heat- and enzymatic-mediated virus antigen retrieval methods to determine the optimal virus antigen recovery as well as identifying alternative retrieval methods to enable flexibility of IHC methods. In addition to using native virus infected cells as positive control material, the evaluation of non-infected cells expressing coronavirus (SARS, MERS) spike as a biosecure alternative to assays involving live virus was undertaken. Optimized protocols were successfully applied to experimental animal-derived tissues. The diverse techniques for virus detection and control material generation demonstrated in this study can be applied to investigations of coronavirus pathogenesis and therapeutic research in animal models
    corecore