187 research outputs found

    Emergency Portacaval Shunt Versus Rescue Portacaval Shunt in a Randomized Controlled Trial of Emergency Treatment of Acutely Bleeding Esophageal Varices in Cirrhosis—Part 3

    Get PDF
    Emergency treatment of bleeding esophageal varices in cirrhosis is of singular importance because of the high mortality rate. Emergency portacaval shunt is rarely used today because of the belief, unsubstantiated by long-term randomized trials, that it causes frequent portal-systemic encephalopathy and liver failure. Consequently, portacaval shunt has been relegated solely to salvage therapy when endoscopic and pharmacologic therapies have failed. Question: Is the regimen of endoscopic sclerotherapy with rescue portacaval shunt for failure to control bleeding varices superior to emergency portacaval shunt? A unique opportunity to answer this question was provided by a randomized controlled trial of endoscopic sclerotherapy versus emergency portacaval shunt conducted from 1988 to 2005. Unselected consecutive cirrhotic patients with acute bleeding esophageal varices were randomized to endoscopic sclerotherapy (n = 106) or emergency portacaval shunt (n = 105). Diagnostic workup was completed and treatment was initiated within 8 h. Failure of endoscopic sclerotherapy was defined by strict criteria and treated by rescue portacaval shunt (n = 50) whenever possible. Ninety-six percent of patients had more than 10 years of follow-up or until death. Comparison of emergency portacaval shunt and endoscopic sclerotherapy followed by rescue portacaval shunt showed the following differences in measurements of outcomes: (1) survival after 5 years (72% versus 22%), 10 years (46% versus 16%), and 15 years (46% versus 0%); (2) median post-shunt survival (6.18 versus 1.99 years); (3) mean requirements of packed red blood cell units (17.85 versus 27.80); (4) incidence of recurrent portal-systemic encephalopathy (15% versus 43%); (5) 5-year change in Child’s class showing improvement (59% versus 19%) or worsening (8% versus 44%); (6) mean quality of life points in which lower is better (13.89 versus 27.89); and (7) mean cost of care per year (39,200versus39,200 versus 216,700). These differences were highly significant in favor of emergency portacaval shunt (all p < 0.001). Emergency portacaval shunt was strikingly superior to endoscopic sclerotherapy as well as to the combination of endoscopic sclerotherapy and rescue portacaval shunt in regard to all outcome measures, specifically bleeding control, survival, incidence of portal-systemic encephalopathy, improvement in liver function, quality of life, and cost of care. These results strongly support the use of emergency portacaval shunt as the first line of emergency treatment of bleeding esophageal varices in cirrhosis

    A well-kept treasure at depth: precious red coral rediscovered in Atlantic deep coral gardens (SW Portugal) after 300 years

    Get PDF
    The highly valuable red coral Corallium rubrum is listed in several Mediterranean Conventions for species protection and management since the 1980s. Yet, the lack of data about its Atlantic distribution has hindered its protection there. This culminated in the recent discovery of poaching activities harvesting tens of kg of coral per day from deep rocky reefs off SW Portugal. Red coral was irregularly exploited in Portugal between the 1200s and 1700s, until the fishery collapsed. Its occurrence has not been reported for the last 300 years.info:eu-repo/semantics/publishedVersio

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.25±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the ppp\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the ppp\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2

    Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays

    Get PDF
    A search for CPCP violation using TT-odd correlations is performed using the four-body D0K+Kπ+πD^0 \to K^+K^-\pi^+\pi^- decay, selected from semileptonic BB decays. The data sample corresponds to integrated luminosities of 1.0fb11.0\,\text{fb}^{-1} and 2.0fb12.0\,\text{fb}^{-1} recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The CPCP-violating asymmetry aCPT-odda_{CP}^{T\text{-odd}} is measured to be (0.18±0.29(stat)±0.04(syst))%(0.18\pm 0.29\text{(stat)}\pm 0.04\text{(syst)})\%. Searches for CPCP violation in different regions of phase space of the four-body decay, and as a function of the D0D^0 decay time, are also presented. No significant deviation from the CPCP conservation hypothesis is found

    Measurement of CP asymmetry in B-s(0) -> D-s(-/+) K--/+ decays

    Get PDF
    We report on measurements of the time-dependent CP violating observables in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. We use these observables to make the first measurement of the CKM angle γ\gamma in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (11543+28_{-43}^{+28})^\circ modulo 180^\circ at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays using a dataset corresponding to 1.0 fb1^{−1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf_{f} = 0.53±0.25±0.04, AfΔΓ_{f}^{ΔΓ}  = 0.37 ± 0.42 ± 0.20, AfΔΓ=0.20±0.41±0.20 {A}_{\overline{f}}^{\varDelta \varGamma }=0.20\pm 0.41\pm 0.20 , Sf_{f} = −1.09±0.33±0.08, Sf=0.36±0.34±0.08 {S}_{\overline{f}}=-0.36\pm 0.34\pm 0.08 , where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0_{s}^{0} mixing phase −2βs_{s} leads to the first extraction of the CKM angle γ from Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays, finding γ = (11543+28_{− 43}^{+ 28} )° modulo 180° at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0B^0_s mixing phase 2βs-2\beta_s leads to the first extraction of the CKM angle γ\gamma from Bs0DsK±B^0_s \rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (11543+28_{-43}^{+28})^\circ modulo 180^\circ at 68% CL, where the error contains both statistical and systematic uncertainties

    Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)

    Get PDF
    A search for the lepton flavour violating decay τμμ+μ\tau^-\rightarrow\mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τμμ+μ)<4.6×108\mathcal{B}(\tau^-\rightarrow\mu^-\mu^+\mu^-)<4.6\times10^{−8}.A search for the lepton flavour violating decay τ^{−} → μ^{−} μ+^{+} μ^{−} is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τμμ+μ)<4.6×108 \mathrm{\mathcal{B}}\left({\tau}^{-}\to {\mu}^{-}{\mu}^{+}{\mu}^{-}\right)<4.6\times {10}^{-8} .A search for the lepton flavour violating decay τμμ+μ\tau^-\to \mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0fb11.0\mathrm{\,fb}^{-1} of proton-proton collisions at a centre-of-mass energy of 7TeV7\mathrm{\,Te\kern -0.1em V} and 2.0fb12.0\mathrm{\,fb}^{-1} at 8TeV8\mathrm{\,Te\kern -0.1em V}. No evidence is found for a signal, and a limit is set at 90%90\% confidence level on the branching fraction, B(τμμ+μ)<4.6×108\mathcal{B}(\tau^-\to \mu^-\mu^+\mu^-) < 4.6 \times 10^{-8}

    A study of CP violation in B-+/- -&gt; DK +/- and B-+/- -&gt; D pi(+/-) decays with D -&gt; (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Measurement of Upsilon production in collisions at root s=2.76 TeV

    Get PDF
    The production of Υ(1S)\Upsilon(1S), Υ(2S)\Upsilon(2S) and Υ(3S)\Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb1pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of s=2.76\sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the Υ\Upsilon transverse momentum and rapidity, over the ranges $p_{\rm T} Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation
    corecore