937 research outputs found

    Correlated emission and spin-down variability in radio pulsars

    Full text link
    The recent revelation that there are correlated period derivative and pulse shape changes in pulsars has dramatically changed our understanding of timing noise as well as the relationship between the radio emission and the properties of the magnetosphere as a whole. Using Gaussian processes we are able to model timing and emission variability using a regression technique that imposes no functional form on the data. We revisit the pulsars first studied by Lyne et al. (2010). We not only confirm the emission and rotational transitions revealed therein, but reveal further transitions and periodicities in 8 years of extended monitoring. We also show that in many of these objects the pulse profile transitions between two well-defined shapes, coincident with changes to the period derivative. With a view to the SKA and other telescopes capable of higher cadence we also study the detection limitations of period derivative changes.Comment: 4 pages, 2 Figures, Proceedings of IAU Symposium 337 "Pulsar Astrophysics - The Next 50 Years" held at Jodrell Bank Observatory, UK Sept. 4-8 201

    Acute Blood Pressure Responses in Healthy Adults During Controlled Air Pollution Exposures

    Get PDF
    Exposure to air pollution has been shown to cause arterial vasoconstriction and alter autonomic balance. Because these biologic responses may influence systemic hemodynamics, we investigated the effect of air pollution on blood pressure (BP). Responses during 2-hr exposures to concentrated ambient fine particles (particulate matter < 2.5 ÎŒm in aerodynamic diameter; PM(2.5)) plus ozone (CAP+O(3)) were compared with those of particle-free air (PFA) in 23 normotensive, non-smoking healthy adults. Mean concentrations of PM(2.5) were 147 ± 27 versus 2 ± 2 ÎŒg/m(3), respectively, and those of O(3) were 121 ± 3 versus 8 ± 5 ppb, respectively (p < 0.0001 for both). A significant increase in diastolic BP (DBP) was observed at 2 hr of CAP+O(3) [median change, 6 mm Hg (9.3%); binomial 95% confidence interval (CI), 0 to 11; p = 0.013, Wilcoxon signed rank test] above the 0-hr value. This increase was significantly different (p = 0.017, unadjusted for basal BP) from the small 2-hr change during PFA (median change, 1 mm Hg; 95% CI, −2 to 4; p = 0.24). This prompted further investigation of the CAP+O(3) response, which showed a strong association between the 2-hr change in DBP (and mean arterial pressure) and the concentration of the organic carbon fraction of PM(2.5) (r = 0.53, p < 0.01; r = 0.56, p < 0.01, respectively) but not with total PM(2.5) mass (r ≀ 0.25, p ≄ 0.27). These findings suggest that exposure to environmentally relevant concentrations of PM(2.5) and O(3) rapidly increases DBP. The magnitude of BP change is associated with the PM(2.5) carbon content. Exposure to vehicular traffic may provide a common link between our observations and previous studies in which traffic exposure was identified as a potential risk factor for cardiovascular disease

    The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background

    Get PDF
    El conjunto de datos de 15 años de NANOGrav muestra evidencias de la presencia de un fondo de ondas gravitacionales (GWB) de baja frecuencia. Aunque muchos procesos fĂ­sicos pueden originar estas ondas gravitacionales de baja frecuencia, aquĂ­ analizamos la señal como procedente de una poblaciĂłn de agujeros negros binarios supermasivos (SMBH) distribuidos por todo el Universo. Demostramos que los modelos astrofĂ­sicos de poblaciones binarias SMBH son capaces de reproducir tanto la amplitud como la forma del espectro de ondas gravitacionales de baja frecuencia observado. Aunque mĂșltiples variaciones del modelo son capaces de reproducir el espectro GWB con nuestra precisiĂłn de medida actual, nuestros resultados subrayan la importancia de modelar con precisiĂłn la evoluciĂłn binaria para producir espectros GWB realistas. AdemĂĄs, aunque unos parĂĄmetros razonables son capaces de reproducir las observaciones de 15 años, la amplitud implĂ­cita del GWB requiere que un gran nĂșmero de parĂĄmetros se sitĂșen en los lĂ­mites de los valores esperados o que un pequeño nĂșmero de parĂĄmetros difieran notablemente de las expectativas estĂĄndar. Aunque todavĂ­a no somos capaces de establecer definitivamente el origen de la señal GWB inferida, la consistencia de la señal con las expectativas astrofĂ­sicas ofrece una perspectiva tentadora para confirmar que las binarias SMBH son capaces de formarse, alcanzar separaciones de sub-segundos y finalmente unirse. A medida que la importancia aumente con el tiempo, las caracterĂ­sticas de orden superior del espectro del GWB determinarĂĄn definitivamente la naturaleza del GWB y permitirĂĄn nuevas restricciones sobre las poblaciones de SMBH. © 2023The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations. © 2023. The Author(s). Published by the American Astronomical Society

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Jet production in charged current deep inelastic eâșp scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic eâșp scattering for QÂČ > 200 GeVÂČ with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻Âč. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}âŒȘ, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}âŒȘ at y_{cut} = 10⁻ÂČ for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of QÂČ is found to be consistent with that measured in NC DIS

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    Combined QCD and electroweak analysis of HERA data

    Full text link
    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections from proofing process and small change to Fig. 12 and Table

    Limits on the effective quark radius from inclusive epep scattering at HERA

    Get PDF
    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current epep scattering corresponding to a luminosity of around 1 fb−1^{-1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive epep data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43⋅10−160.43\cdot 10^{-16} cm.Comment: 10 pages, 4 figures, accepted by Phys. Lett.

    Search for a narrow baryonic state decaying to pKS0{pK^0_S} and pˉKS0{\bar{p}K^0_S} in deep inelastic scattering at HERA

    Get PDF
    A search for a narrow baryonic state in the pKS0pK^0_S and pˉKS0\bar{p}K^0_S system has been performed in epep collisions at HERA with the ZEUS detector using an integrated luminosity of 358 pb−1^{-1} taken in 2003-2007. The search was performed with deep inelastic scattering events at an epep centre-of-mass energy of 318 GeV for exchanged photon virtuality, Q2Q^2, between 20 and 100 GeV2\rm{} GeV^{2}. Contrary to evidence presented for such a state around 1.52 GeV in a previous ZEUS analysis using a sample of 121 pb−1^{-1} taken in 1996-2000, no resonance peak was found in the p(pˉ)KS0p(\bar{p})K^0_S invariant-mass distribution in the range 1.45-1.7 GeV. Upper limits on the production cross section are set.Comment: 16 pages, 4 figures, accepted by Phys. Lett. B. Minor changes from journal reviewing process, including a small correction to figure
    • 

    corecore