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Introduction
It is challenging to estimate associations 
between long-term exposure to air pollution 
and health outcomes because pollution levels 
vary both in space and time. Exposure assess-
ment is further complicated due to people 
moving several times throughout their life-
times. In Canada, for example, nearly half 
of all individuals moved at least once within 
the 5-year period between 2001 and 2006 
(Statistics Canada 2006). Many longitudinal 
cohorts include location information for 
subjects only at study inception. Estimates 
of exposure are therefore often assigned to 
persons’ location at baseline as a marker for 
long-term exposure (Beelen et al. 2008; Jerrett 

et al. 2009a, 2009b; Pope et al. 2002), which, 
because of residential mobility patterns, inher-
ently leads to exposure misclassification.

Despite these limitations and challenges, 
several large cohort studies based in the United 
States (Jerrett et al. 2013; Krewski et al. 2009; 
Laden et  al. 2006), Europe (Beelen et  al. 
2008; Carey et al. 2013; Cesaroni et al. 2013; 
Raaschou-Nielsen et al. 2012), and Canada 
(Crouse et al. 2012) have demonstrated robust 
and relatively consistent associations between 
long-term exposures to ambient pollution 
and risk of mortality from nonaccidental 
causes, cardiovascular diseases, and lung 
cancer. In our original analysis of the national, 
population-based Canadian Census Health 

and Environment Cohort (CanCHEC) 
(Crouse et al. 2012), we assigned estimates 
of ambient concentrations of fine particulate 
matter [particulate matter ≤ 2.5 μm in aero-
dynamic diameter (PM2.5)] to the enumera-
tion area of residence (enumeration areas range 
in size from approximately 650 dwellings in 
urban areas to < 100 dwellings in rural areas) 
at baseline to 2.1 million nonimmigrant adults 
across Canada who completed the 1991 long-
form census. We reported hazard ratios (HRs) 
for mortality from nonaccidental causes and 
cardiovascular disease of 1.10 [95% confi-
dence intervals (CIs): 1.05, 1.15] and 1.15 
(95% CI: 1.07, 1.24), respectively, per an 
increase of 10 μg/m3 in PM2.5. These findings 
were within the ranges of associations reported 
in other cohort studies (Cesaroni et al. 2013; 
Krewski et al. 2009; Laden et al. 2006).

Given our acquisition of additional 
and enhanced data sets, the objective of 
the present study is to present an extensive 
analysis of the associations between cause-
specific mortality and long-term exposures to 
three ambient pollutants among subjects in 
the CanCHEC. We build on our previous 
work by adding five additional years of follow-
up, tracking subjects’ annual residential histo-
ries for the purpose of assigning time-varying 
exposures, including immigrants, including 
subjects living in the far north, using 
improved estimates of satellite-derived PM2.5, 
adding exposure estimates for ozone (O3) and 
nitrogen dioxide (NO2), and assigning more 
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Background: Few studies examining the associations between long-term exposure to ambient air 
pollution and mortality have considered multiple pollutants when assessing changes in exposure due 
to residential mobility during follow-up.

Objective: We investigated associations between cause-specific mortality and ambient concentra-
tions of fine particulate matter (≤ 2.5 μm; PM2.5), ozone (O3), and nitrogen dioxide (NO2) in a 
national cohort of about 2.5 million Canadians.

Methods: We assigned estimates of annual concentrations of these pollutants to the residential 
postal codes of subjects for each year during 16 years of follow-up. Historical tax data allowed us to 
track subjects’ residential postal code annually. We estimated hazard ratios (HRs) for each pollutant 
separately and adjusted for the other pollutants. We also estimated the product of the three HRs as 
a measure of the cumulative association with mortality for several causes of death for an increment 
of the mean minus the 5th percentile of each pollutant: 5.0 μg/m3 for PM2.5, 9.5 ppb for O3, and 
8.1 ppb for NO2.

Results: PM2.5, O3, and NO2 were associated with nonaccidental and cause-specific mortality 
in single-pollutant models. Exposure to PM2.5 alone was not sufficient to fully characterize the 
toxicity of the atmospheric mix or to fully explain the risk of mortality associated with exposure to 
ambient pollution. Assuming additive associations, the estimated HR for nonaccidental mortality 
corresponding to a change in exposure from the mean to the 5th percentile for all three pollut-
ants together was 1.075 (95% CI: 1.067, 1.084). Accounting for residential mobility had only 
a limited impact on the association between mortality and PM2.5 and O3, but increased associa-
tions with NO2.

Conclusions: In this large, national-level cohort, we found positive associations between several 
common causes of death and exposure to PM2.5, O3, and NO2.
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spatially refined exposure assessments by using 
subjects’ 6-digit residential postal code instead 
of the larger enumeration area of residence.

Methods
The study cohort. CanCHEC has been 
described in detail previously (Crouse 
et al. 2012; Peters et al. 2013). Briefly, it is 
a population-based cohort of subjects who 
were ≥ 25 years of age at baseline; a usual 
resident of Canada on the census reference 
day (4 June 1991); not a resident of an insti-
tution such as a prison, hospital, or nursing 
home; and among the 20% of Canadian 
households (~  3.6 million respondents) 
selected for enumeration with the long-form 
census questionnaire. Subjects in CanCHEC 
were linked to the Canadian Mortality 
Database using deterministic and probabilistic 
linkage methods from 4 June 1991 through 
31 December 2006 (Peters et al. 2013). The 
date of death and the underlying cause of 
death were extracted from death certificates 
coded by nosologists to the International 
Classification of Diseases, 9th Revision (ICD-9) 
for deaths before 2000, and to the 10th 
Revision (ICD-10) for those that occurred 
from 2000 onward. The original cohort 
included the enumeration area of residence 
in 1991 and mortality follow-up through 
2001. We extended the years of follow-up 
through 2006 and linked annual place of resi-
dence (6-digit postal code) using Historical 
Tax Summary Files from 1984 through 2006 
(Peters et al. 2013). In urban areas, 6-digit 
residential postal codes most often correspond 
to one side of a city block or to a single apart-
ment building; in rural areas a single postal 
code may represent a larger area.

Assignment of exposure to ambient air 
pollution. We assigned estimates of concen-
trations to PM2.5, O3, and NO2 to the repre-
sentative point of each subject’s residential 
postal code for every available year between 
1984 and 2006 (i.e., up to 7 years before 
baseline). A subject’s exposure was coded 
as missing in years for which no residen-
tial postal code was available, which could 
indicate that the subject had left Canada, 
moved to an institution, or had not filed an 
income tax return that year.

Our estimates of PM2.5 were derived 
from observations from three satellite 
instruments [MISR (Multi-angle Imaging 
SpectroRadiometer; https://www-misr.jpl.
nasa.gov), MODIS (Moderate Resolution 
Imaging Spectroradiometer; http://modis.
gsfc.nasa.gov), and SeaWiFS (Sea-viewing 
Wide Field-of-view Sensor; http://ocean-
color.gsfc.nasa.gov/SeaWiFS/)] to represent 
median annual concentrations during the 
period 1998–2006 (van  Donkelaar et  al. 
2015) for each grid cell. The PM2.5 esti-
mates were available on a grid with a spatial 

resolution of approximately 10 km × 10 km 
and included coverage up to 70°N. These 
estimates combined the values used in our 
previous study (van Donkelaar et al. 2010) 
with optimal estimation-based values 
(van  Donkelaar et  al. 2013) to produce 
an improved representation of PM2.5 with 
extended temporal range and greater accuracy. 
Temporal variation in PM2.5 between 1998 
and 2006 was inferred from two radiometri-
cally stable satellite instruments (MISR and 
SeaWiFS) (Boys et al. 2014).

We generated an O3 surface representing 
the average of the daily 8-hr maximum 
concentrat ions in the warm seasons 
(1 May–31 October) for the period 2002–
2009 across Canada and the United States 
with 21-km horizontal resolution through an 
optimal interpolation technique adapted to 
air pollutants (Robichaud and Ménard 2014). 
This method linearly combines the hourly 
modeled O3 surface from Canadian air quality 
forecast models with observations available 
in both countries [i.e., U.S. Environmental 
Protection Agency AIRNow observations 
(http://www.airnow.gov)]. The weights attrib-
uted to the model output and observations 
were optimized using an established method of 
data assimilation (Kalnay 2003). The modeled 
O3 surface was provided by the CHRONOS 
(Canadian and Hemispheric Regional Ozone 
and NOx System) operational regional air 
quality forecast model (Pudykiewicz et  al. 
1997). This blending, or data fusion, provides 
more physically realistic estimates of ambient 
O3 concentrations over areas lacking moni-
toring data compared to standard interpola-
tion techniques. Method validation was carried 
out by reprocessing the objective analysis 
with a reduced data set (90%). Therefore, the 
remaining (10%) is used for cross-validation. 
The objective analysis (data fusion of model 
and observations) correctly estimated within a 
factor of two the missing data 64–97% of the 
time, and significantly reduced both systematic 
and random errors in the estimates relative 
to the model alone (Robichaud and Ménard 
2014). The 21-km grid values for this metric 
were then assigned to the 6-digit postal codes 
of the subjects in our cohort.

We estimated residential exposures to 
2006 annual mean concentrations of NO2 
using a national land use regression model 
(LUR) developed from National Air Pollution 
Surveillance (NAPS; http://www.ec.gc.ca/
rnspa-naps/) monitoring data using methods 
reported by Hystad et al. (2011). The updated 
LUR model applied here includes 2005–2011 
satellite NO2 estimates (Lamsal et al. 2008), 
road length within 10 km, area of industrial 
land use within 2 km, and mean summer 
rainfall. This model explained 73% of the vari-
ation in 2006 NAPS measurements with a root 
mean square error of 2.9 parts per billion. The 

model also predicted 43% of the variability 
in NO2 measurements collected in seven 
cities (n = 35–196 sites per city; Hystad et al. 
2011) based on special monitoring campaigns 
conducted to develop land use models. To 
capture fine-scale variation in vehicle emis-
sions, kernel density measures (i.e., smoothed 
surfaces describing densities of roadways) were 
applied as multipliers to the LUR model for 
highways (increasing LUR concentrations 65% 
for the top 10th percentile of measures at the 
edge of highways decreasing linearly to 0% at 
300 m from a highway) and for major roads 
(increasing LUR concentrations 20% for the 
top 10th percentile of measures at the edge of 
major roads decreasing linearly to 0% at 100 m 
from a major road). This method allowed us 
to capture complex patterns in roadway emis-
sions (e.g., the influence of multiple roadways, 
intersections, off-ramps).

For each year of follow-up we estimated 
for each subject a 7-year moving window of 
past concentrations to each pollutant—with 
a single-year lag—beginning with data from 
1984 (i.e., the earliest year of data available to 
us, and thus the largest window of exposure 
available) providing that exposures (i.e., 
postal codes) were available in at least 4 of 
the 7 years. For example, a subject’s moving 
window of exposure for 1991 would be esti-
mated as the mean of the exposures assigned 
to that subject’s postal code over the 7 years 
1984–1990. If postal code information was 
missing in > 3 of those 7 years, no moving 
window of exposure would be assigned, and 
the subject would be excluded from analysis 
in that year. This moving window of exposure 
allowed us to incorporate into our models the 
variability in exposures associated with annual 
residential mobility patterns. This method also 
allowed us to retain subjects for whom we had 
incomplete postal code histories, rather than 
censoring them in years for which we had no 
locational information. The spatial structure 
of each exposure surface was not assessed in a 
time-dependent manner, and thus variation in 
exposure for each subject was attributed solely 
to residential mobility. There are insufficient 
historical observations of these pollutants to 
describe the long-term spatial and temporal 
patterns across all of Canada for this period 
(i.e., fixed-site stations are located only in large 
cities and have incomplete historical records). 
We did, however, compare our satellite-derived 
estimates of PM2.5 with observations from 
fixed-site stations in 10 cities for which long-
term data were available (see Supplemental 
Material, Figure S1). Here, we found a Pearson 
correlation of 0.90 between the estimates used 
in our analyses (i.e., median concentrations 
1998–2006) and long-term means calculated 
with observations from 1984 through 2006.

Main statistical analyses. We used Cox 
proportional hazards models to estimate 
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the associations between air pollution and 
mortality. We estimated HRs stratified by 
sex and by 5-year age groups from ages 25 to 
89 years. We restricted our study to subjects 
< 90 years of age due to potential inaccuracies 
in record linkages among older subjects (e.g., 
the address reported on the annual income 
tax filings of older subjects may reflect those 
of next of kin, or of institutional facilities). 
Subjects were censored at time of death or if 
they were lost to follow-up due to end of study 
period or lack of postal code information.

We adjusted our models for aboriginal 
ancestry, visible minority status, immigrant 
status, marital status, highest level of educa-
tion, employment status, occupational classifi-
cation, and quintiles of household income (see 
Supplemental Material, Table S1, for coding). 
We also calculated time-varying contextual 
variables from the closest census year (i.e., 
either 1991, 1996, 2001, or 2006) adjusted 
for regional variations across Canada (i.e., 
census division means subtracted from census-
tract means) describing the proportion of 
unemployed adults, the proportion of adults 
who had not completed high school, and the 
proportion of individuals in the lowest income 
quintile. Census tracts correspond roughly 
to the size of a neighborhood, and census 
divisions correspond roughly to the size of a 
city or county. These time-varying contextual 
covariates were reassigned each year, taking 
into account each subject’s current residential 
location during each year of follow-up.

We developed models for nine causes of 
mortality including all nonaccidental causes, 
lung cancer, cardiometabolic diseases (i.e., 
circulatory plus diabetes), diabetes, cardio-
vascular diseases, ischemic heart disease, 
cerebrovascular disease, diseases of the respira-
tory system, and chronic obstructive pulmo-
nary disease and allied conditions (chronic 

obstructive pulmonary disease; COPD). 
Table 1 presents specific ICD‑9 and ICD-10 
codes for each cause of death.

We developed models with individual 
pollutants and with all three pollutants 
together (i.e., multi-pollutant models). In 
addition, we determined the product of the 
HRs for all possible pairs of pollutants and 
all three pollutants together based on the 
corresponding multiple pollutant models. We 
also calculated 95% CIs of the HR product 
using covariance of the HR estimates. We 
interpreted the HR associated with a given 
pollutant based on a survival model that 
includes all three pollutants together as the 
marginal risk, whereas we interpreted the 
product of the HRs based on a survival 
model with all three pollutants together as the 
cumulative risk estimate.

More specifically, we estimated cumula-
tive risk estimates assuming additive effects of 
combined pollutant exposures on mortality. 
This method was originally developed for an 
earlier study (Lippmann et  al. 2013), and 
expanded elsewhere (Jerrett et  al. 2013). 
Essentially, the cumulative risk estimate repre-
sents the relative hazard for 1-unit increases in 
all three pollutants compared with that for no 
increase in any of the three exposures.

For this additive model, let x´ = (x1,…xp) 
represent concentrations of P air pollutants 
(i.e., PM2.5, O3, and NO2,). We denote 
the HR based on the combination of the P 
pollutants evaluated at x as the Cumulative 
Risk Index (CRI) and define it as

CRI = exp[∑P
p = 1 β̂pxp] ≡ exp(β̂´x)  

	 = ∏P
p = 1 JHRp ,

where β̂´ = (β̂1,…β̂p) are the estimates of 
the log-hazard ratio for the P pollutants 

estimated in a survival model consisting 
of all P pollutants together, with JHRP 
= exp(β̂pxp) denoting the cumulative hazard 
ratio for the pth pollutant in a multi-pollutant 
survival model. Further denote Cov(β̂) as the 
variance–covariance matrix of β̂. The 95% 
confidence interval of CRI is defined by 
exp[β̂´x ± 1.96 × β̂Cov(β̂)β̂´].

If the pollutants are uncorrelated, we note 
that ∏P

p = 1 JHRp = ∏P
p = 1 IHRp, where IHRp 

denotes the hazard ratio of the pth pollutant 
from a survival model that contains only 
this pollutant, and thus the association with 
each pollutant is estimated independent of 
the other pollutants. If all p pollutants are 
positively correlated, then ∏P

p  =  1 JHRp 
< ∏P

p = 1 IHRp. That is, information in one 
pollutant will also be contained in the other 
pollutants, so one does not necessarily 
require all p pollutants to fully represent the 
cumulative impact on survival of the pollu-
tion mixture. Comparisons of CRIs based 
on selected subsets of the P pollutants can 
be used to interpret the associations with 
mortality among various pollutant subsets. 
Moreover, comparisons of risk estimates 
based on pollutants estimated cumulatively 
and independently provide a means of under-
standing the impacts of the atmospheric 
mixture on survival.

We calculated our HRs per incre-
ment of the mean minus the 5th percentile 
of exposure, namely 5.0 μg/m3 for PM2.5, 
9.5 ppb for O3, and 8.1 ppb for NO2. The 
HR evaluated at this exposure contrast 
approximates the average of the HRs among 
all subjects based on their individual exposure 
to either a single pollutant or multiple pollut-
ants, and thus represents the relative risk for 
the cohort as whole. We chose not use the 
interquartile range (IQR) for each pollutant 
(i.e., 5.8 μg/m3 for PM2.5, 9.9 ppb for O3, 

Table 1. Hazard ratios (95% CIs) for mortality by pollutant in single- and multi-pollutant models: models stratified by age and sex, adjusted for personala and 
contextualb covariates. 

Model
Nonaccidentalc 

(301,115)

Trachea, 
bronchus, and 
lung cancersd 

(30,545)

Cardiometabolic 
diseasese 
(117,495)

Diabetesf 
(9,330)

Cardiovascularg 
(98,970)

Ischemic 
heart diseaseh 

(63,050)
Cerebrovasculari 

(19,725)

Diseases of 
the respiratory 

systemj 
(24,900)

COPD and allied 
conditionsk (14,170) 

PM2.5 alone 1.035 
(1.029, 1.041) 

1.031  
(1.013, 1.049) 

1.038  
(1.029, 1.047) 

1.149  
(1.113, 1.186)

1.030  
(1.021, 1.040)

1.085  
(1.073, 1.099)

0.960  
(0.939, 0.980)

0.973  
(0.955, 0.992)

0.989  
(0.964, 1.063)

PM2.5 adjusted 
for O3 and NO2

1.011 
(1.003, 1.020)

1.038  
(1.011, 1.066)

0.998  
(0.985, 1.011)

1.060  
(1.011, 1.112)

0.994  
(0.979, 1.008)

1.027  
(1.008, 1.046)

0.938  
(0.908, 0.969)

0.978  
(0.950, 1.007)

1.005  
(0.967, 1.004)

O3 alone 1.031 
(1.026, 1.036)

1.006  
(0.990, 1.023)

1.046  
(1.037, 1.054)

1.156  
(1.121, 1.190)

1.037  
(1.028, 1.047)

1.087  
(1.075, 1.100)

0.981  
(0.961, 1.001)

0.971  
(0.953, 0.989)

0.972  
(0.949, 0.996)

O3 adjusted for 
PM2.5 and NO2

1.018 
(1.010, 1.026)

0.973  
(0.950, 0.997)

1.043  
(1.031, 1.056)

1.110  
(1.063, 1.160)

1.038  
(1.024, 1.052)

1.062  
(1.045, 1.080)

1.023  
(0993, 1.055)

0.981  
(0.955, 1.007)

0.961  
(0.928, 0.996)

NO2 alone 1.052 
(1.045, 1.059)

1.074  
(1.051, 1.097)

1.040  
(1.029, 1.051)

1.039  
(0.999, 1.080)

1.041  
(1.028, 1.053)

1.063  
(1.047, 1.079)

1.004  
(0.977, 1.031)

1.036  
(1.012, 1.061)

1.068  
(1.035, 1.102)

NO2 adjusted for 
PM2.5 and O3

1.045 
(1.037, 1.052)

1.067  
(1.043, 1.091)

1.032  
(1.021, 1.044)

1.003  
(0.963, 1.044)

1.035  
(1.022, 1.048)

1.042  
(1.026, 1.058)

1.020  
(0.993, 1.049)

1.048  
(1.022, 1.074)

1.075  
(1.040, 1.110)

Hazard ratios are per mean – 5th percentile (i.e., 5.0-μg/m3, 9.5-ppb, and 8.1-ppb increases in PM2.5, O3, and NO2, respectively); number of deaths in parentheses is rounded to 
nearest 5. aAboriginal ancestry, visible minority status, highest level of education, employment status, occupational class, immigrant status, marital status, income quintile. bCensus 
division and census tract–census division percent of immigrants, percent of adults without high school diploma, percent of subjects in lowest income quintile. cICD-9: < 800; ICD-10: 
A–R. dICD-9: 162; ICD-10: C33–C34. eICD-9: 390–459, 250; ICD-10: I00–I99, E10–E14. fICD-9: 250; ICD-10: E10–E14. gICD-9: 410–440; ICD-10: I20–I25, I30–I51, I60–I69, I70. hICD-9: 410–414; 
ICD-10: I20–I25. iICD-9: 430–438; ICD-10: I60–I69. jICD-9: 460–519 ; ICD-10: J00–J98. kICD-9: 490–496 ; ICD-10: J19–J46.
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and 10.5 ppb for NO2) because we are uncer-
tain as to whether an IQR contrast for all 
three pollutants examined simultaneously 
exists within the cohort’s exposure profile 
whereas the mean of each pollutant clearly 
does. We further limited the contrast to the 
mean minus the 5th percentile since setting 
the lower bound on the exposure contrast to 
zero exposure is not likely achievable and thus 
would unduly inflate the HR.

Additional analyses. We tested for effect 
modification by selected personal character-
istics for each pollutant with nonaccidental 
mortality and with cardiometabolic diseases. 
Specifically, we used Cochran’s Q-statistic 
(Axelson 1980) to test heterogeneity in HRs 
by age during follow-up (i.e., only used 
follow-up of subjects during specified age 
range), sex, income, and immigrant status.

To evaluate the impact of tracking resi-
dential mobility on our associations, we 
created a “baseline exposure” cohort for which 
we assumed that the only address informa-
tion available was postal code at baseline. Here 
we assumed that exposure at baseline was 
an adequate proxy of long-term exposures. 
We therefore assigned exposure estimates to 
subjects with available postal code information 
in 1991, and censored only at time of death. 
We developed these single-pollutant models 
for nonaccidental mortality only.

Two important risk factors for mortality 
(cigarette smoking habits and obesity) were 
not captured in the census. We therefore 
used a method (Shin et al. 2014) to mathe
matically adjust our HRs by examining 
the relationship between these missing risk 
factors and air pollution in an ancillary data 
set that did include information on smoking 
and obesity as well as the other variables 
included in our survival models. Briefly, with 
this method we adjusted the observed HR 
for a series of risk factors not reported in our 
data set while simultaneously controlling for 
risk factors that were included in our survival 
model (e.g., education, income, contextual 
variables). This method requires estimates of 
the multivariate linear association between 
the variables in the survival model and the 
variables we indirectly adjusted for. We 
obtained this association from an analysis of 
the national Canadian Community Health 
survey, for which we assigned our estimates 
of exposure to each subject; the details of the 
method are reported elsewhere (Shin et al. 
2014). We made these adjustments for both 
the single- and multi-pollutant model HRs.

Las t ,  we  genera ted  p lot s  o f  the 
concentration–response curves to examine 
the shape of the relationship between each 
pollutant and nonaccidental mortality using 
restricted cubic spline functions with two 
degrees of freedom. All analyses were conducted 
in SAS version 9.3 (SAS Institute Inc.).

Results
Our cohort consisted of 2,521,525 subjects 
at baseline who contributed to a total of 
36,377,506 person-years of follow-up (see 
Supplemental Material, Table S1). About 
19% of subjects were immigrants to Canada. 
At baseline, the distribution of exposures (i.e., 
minimum, 25th percentile, median, 75th 
percentile, maximum, and mean) to PM2.5 
were 0.9, 6.0, 8.6, 11.8, 17.6, and 8.9 μg/m3, 
respectively; to O3 were 10.7, 34.3, 39.0, 
44.2, 60, and 39.6 ppb, respectively; and 
to NO2 were 0, 6.0, 10.4, 16.5, 51.5, and 
11.6  ppb, respectively. Generally, visible 
minorities and those reporting aboriginal 
ancestry tended to have lower exposures than 
others, and immigrants tended to have higher 
exposures than Canadian-born subjects. 
The differences in mean exposures between 
these groups relate to urban–rural differences 
in residence. See Supplemental Material, 
Figure S2A–C for maps of the spatial patterns 
of PM2.5, O3, and NO2 concentrations, 
respectively. At baseline, exposure to PM2.5 
was correlated with exposure to O3 (r = 0.73), 
but less so with NO2 (r = 0.40), and the 
correlation between exposure to NO2 and 
O3 (r = 0.19) was smaller than that between 
the others (all three significant at p < 0.001). 
Approximately 301,115 subjects died during 
the 16 years of follow-up. Table 1 presents 
numbers of deaths by individual causes.

Single-pollutant models. We present in 
Table 1 the HRs and 95% CIs for the asso-
ciations between cause-specific mortality and 
PM2.5, O3, and NO2. Individually, all three 
pollutants were positively associated with 
deaths from nonaccidental causes, cardiomet-
abolic diseases, diabetes alone, and ischemic 
heart disease, but none were associated with 
deaths from cerebrovascular disease. Increases 

in exposure per increment of the mean – 5th 
percentile of each pollutant were associated 
with approximately 4–5% increased risk of 
mortality from nonaccidental causes.

Multi-pollutant models. Table  1 also 
shows results of the multi-pollutant models. 
Despite correlations between the pollutants, 
all three were associated with selected causes 
of mortality when adjusted for the other 
pollutants. In these models, PM2.5 was asso-
ciated with elevated risk of mortality from 
nonaccidental causes, lung cancer, diabetes, 
and ischemic heart disease. O3 was associ-
ated with increased risk of mortality from 
nonaccidental causes, cardiometabolic 
diseases, diabetes, cardiovascular disease, 
ischemic heart disease, and cerebrovascular 
disease. NO2 was associated with mortality 
from nonaccidental causes, lung cancer, 
cardiometabolic diseases, cardiovascular 
disease, ischemic heart disease, respiratory 
disease, and COPD. Here we also found 
weaker evidence of associations with diabetes 
and cerebrovascular disease.

Cumulative risk estimates. We present 
the cumulative risk estimates in Table  2. 
The cumulative risk estimates were derived 
from models that were stratified by, and 
adjusted for, the same variables as were used 
in the single- and multi-pollutant models. 
Cumulatively, we found significant, positive 
associations with deaths from each of the 
following: nonaccidental causes, lung cancer, 
cardiometabolic diseases, diabetes, cardio-
vascular disease, and ischemic heart disease, 
but no significant associations with cerebro-
vascular, respiratory disease, or COPD. The 
strongest overall, cumulative risk estimate 
was for mortality from diabetes (HR = 1.180; 
95% CI: 1.125, 1.236). Mutually adjusted 
HRs for the individual pollutants from the 

Table 2. Hazard ratios (95% CIs) for cumulative risk estimates from two- and three-pollutant models, 
stratified by age and sex, adjusted for personala and contextualb covariates. 

Cause of mortality PM2.5 + O3 PM2.5 + NO2 O3 + NO2 PM2.5 + O3 + NO2

Nonaccidental 1.038  
(1.032, 1.044)

1.070 
(1.062, 1.078)

1.074 
(1.065, 1.083)

1.075 
(1.067, 1.084)

Trachea, bronchus, and lung cancers 1.023  
(1.005, 1.042)

1.086 
(1.060, 1.114)

1.073 
(1.045, 1.100)

1.078 
(1.050, 1.106)

Cardiometabolic diseases 1.048  
(1.038, 1.057)

1.062 
(1.049, 1.076)

1.075 
(1.061, 1.089)

1.075 
(1.061, 1.089)

Diabetes 1.177  
(1.139, 1.217)

1.145 
(1.094, 1.198)

1.170 
(1.117, 1.226)

1.180 
(1.125, 1.236)

Cardiovascular 1.038  
(1.028, 1.049)

1.057 
(1.042, 1.071)

1.068 
(1.054, 1.084)

1.068 
(1.053, 1.083)

Ischemic heart disease 1.100  
(1.086, 1.114)

1.118 
(1.099, 1.137)

1.133 
(1.113, 1.153)

1.137 
(1.116, 1.157)

Cerebrovascular 0.964  
(0.943, 0.986)

0.974 
(0.945, 1.004)

0.988 
(0.957, 1.019)

0.980 
(0.949, 1.011)

Diseases of the respiratory system 0.968  
(0.949, 0.988)

1.010 
(0.983, 1.038)

1.008 
(0.980, 1.036)

1.005 
(0.977, 1.034)

COPD and allied conditions 0.979  
(0.953, 1.006)

1.049 
(1.012, 1.088)

1.037 
(0.999, 1.076)

1.038 
(0.999, 1.077)

Hazard ratios are per mean – 5th percentile (i.e., 5.0-μg/m3, 9.5-ppb, and 8.1-ppb increases in PM2.5, O3, and NO2, 
respectively). aAboriginal ancestry, visible minority status, highest level of education, employment status, occupational 
class, immigrant status, marital status, income quintile. bCensus division and census tract–census division percent of 
immigrants, percent of adults without high school diploma, percent of subjects in lowest income quintile. 
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three-pollutant models show that, in general, 
associations with mean  –  5th percentile 
increases in PM2.5 and O3 are weaker than 
those for NO2, and consequently, HRs 
for increases in all three pollutants (vs. no 
increase in any pollutant) are similar to the 
product of the HRs for increases in O3 and 
NO2, or increases in PM2.5 and NO2.

Results of additional analyses. Analyses 
of effect modification are presented in 
Supplemental Material, Tables S2 and S3, 
for all nonaccidental mortality and cardio-
metabolic mortality, respectively. Among men, 
we found decreasing associations between 
exposure and risk of mortality among older 
subjects in all cases except with cardio-
metabolic deaths and NO2. Among women, 
however, we found this association only in the 
case of O3 (with both outcomes). Compared 
with those in the highest income quintile, 
subjects in the lowest had stronger associations 
with all three pollutants and nonaccidental 
mortality, but only with NO2 in the case of 
cardiometabolic mortality. Last, we found 
positive associations among Canadian-born 
subjects in all cases, but no associations among 
immigrants and exposure to PM2.5 or O3.

Our models in which we assigned exposure 
only at baseline were based on a slightly 
different set of subjects from those included in 
our main models. The baseline-exposure cohort 
consists exclusively of subjects for whom we 
had a postal code in 1991, regardless of avail-
ability in other years. This cohort had an age 
distribution and proportion of immigrants 
similar to those of our main cohort (results not 
shown). Here, with O3 we found associations 
with nonaccidental mortality nearly identical to 
those reported in our main models (i.e., 1.034, 
95% CI: 1.028, 1.039); with PM2.5 we found 
similar, but attenuated associations (i.e., 1.025; 
95% CI: 1.020, 1.031); and with NO2, we 
found notably weaker evidence of an association 
(i.e., 1.017; 95% CI: 1.009, 1.025).

Indirect adjustment for smoking behavior 
and obesity had very little impact on the HRs 
(generally in the range of 1–2% increase 
or decrease, depending on cause of death; 
the indirectly adjusted HRs presented in 
Supplemental Material, Table  S4, can be 
compared with the non-indirectly adjusted 
HRs presented in Table 1).

In the case of all three pollutants, 
models using natural splines improved 
model fit compared to those that assumed 
linearity. We examined the spline plots 
for nonaccidental mortality and identified 
different shapes in the response curves for 
each pollutant (see Supplemental Material, 
Figure S3A–C). The natural spline fit for 
both PM2.5 and NO2 are supralinear, whereas 
the fit for O3 appears to be sublinear. Fits 
for all three pollutants were superior to their 
linear counterparts (p < 0.0001). Supralinear 

concentration–mortality associations are 
characterized by larger changes in risk for 
low concentrations compared with higher 
values, whereas sublinear associations have 
the opposite property (Pope et  al. 2015). 
Estimates of excess deaths attributable to 
changes in air quality will thus depend on the 
exposure distribution, the size of population 
exposed to any concentration, and the shape 
of the concentration–mortality association. 
For PM2.5 and NO2, marginal changes in 
exposure in areas of low pollution will trans-
late into larger marginal reductions in deaths 
compared with equivalent marginal changes 
in areas of higher pollution. For O3, the 
opposite pattern of excess deaths is predicted 
by our results. This suggests that strategies to 
improve air quality could be designed with 
regional differences for each pollutant to 
maximize improvement in population health.

Discussion
We found positive associations between 
several common causes of death and exposure 
to generally low concentrations of PM2.5, 
O3, and NO2 in a nationally representative 
cohort of > 2.5 million Canadian adults who 
were followed for 16 years. The findings here 
corroborate and expand upon those reported 
in our earlier analysis (Crouse et al. 2012) 
with the previous cohort where we considered 
associations only with PM2.5 and 10 years 
of follow-up. The present study is among 
the first cohort studies to show associations 
between ambient concentrations of O3 and 
risk of mortality from several important 
causes of death, including cardiometabolic 
diseases, diabetes, cardiovascular disease, and 
ischemic heart disease, after controlling for 
both PM2.5 and NO2 together. Substantial 
spatial correlation between PM2.5 and O3 
concentrations, however, makes it statistically 
difficult to separate the contributions to risk 
of the individual pollutants.

The patterns that we observed in our 
cumulative risk models for nonaccidental 
mortality (Table 2) are very similar to those 
reported by Jerrett et al. (2013) in their study 
of subjects across California using the same 
three pollutants, wherein they concluded that 
“a combination of NO2 and O3 is sufficient 
to characterize the toxicity of the pollutant 
mixture in this study, at least with respect to 
the three pollutants considered.” 

Several previous cohort studies found 
stronger associations with PM2.5 and 
mortality from circulatory and cardiovas-
cular disease than with nonaccidental causes 
(Cesaroni et al. 2013; Crouse et al. 2012; 
Jerrett et al. 2013; Lepeule et al. 2012). Here, 
however, we found the opposite results in our 
single- and multi-pollutant models. In fact, 
in our models adjusted for all three pollut-
ants, we found no significant associations 

with PM2.5 and mortality from either cardio-
metabolic diseases (i.e., HR = 0.998; 95% CI: 
0.983,  1.014) or cardiovascular disease 
(i.e., HR = 0.993; 95% CI: 0.977, 1.010). 
This may be attributable to collinearity or 
to the spatial nature of O3 and NO2, with 
O3 capturing regional variation in air pollu-
tion and NO2 capturing local scale variation 
(and PM2.5 capturing some of both local and 
regional variation). That is, our estimates of 
O3 could be acting as a better indicator of 
regional pollution (and potentially serving 
as a marker for secondary pollutants) than 
are our estimates of PM2.5, whereas NO2 is 
potentially serving as a better marker for rela-
tively fresh combustion emissions, especially 
traffic. Therefore, including O3 and NO2 may 
be explaining these scales of spatial variation 
as they related to spatial patterns of mortality 
more effectively than PM2.5 alone. The results 
of the multi-pollutant models should, there-
fore, be interpreted with caution in regards to 
inferring potential causal pollutants.

As noted above, we found no positive 
associations between O3 and deaths from 
respiratory disease or COPD in any of our 
models. Jerrett et al. (2009a), in their large 
cohort study of nearly 450,000 subjects across 
the United States, observed positive associa-
tions between O3 and deaths from respira-
tory disease, in both single-pollutant models 
and in models adjusted also for PM2.5. They 
reported, however, that local temperature 
significantly modified the association, with no 
positive associations among subjects living in 
areas with long-term average daily maximum 
temperatures below 25.4°C. Given Canada’s 
typically cooler climate compared with most 
of the United States, this may explain in part 
why we found no associations between O3 
and respiratory mortality.

We also found positive associations with 
NO2 and mortality from lung cancer and 
respiratory diseases. These results corrobo-
rate the findings of a previous Canadian 
population-based case–control study (Hystad 
et al. 2013) as well as the results of a recent 
meta-analysis on NO2 and lung cancer risk 
(Hamra et al. 2015). Very few cohort studies 
have considered associations between lung 
cancer or respiratory-related mortality and 
long-term exposure to NO2, and among 
those that have, the findings with respira-
tory mortality have been inconsistent. For 
example, a recent, national English cohort 
study (Carey et al. 2013) found stronger asso-
ciations with NO2 and both lung cancer and 
respiratory mortality than with circulatory 
mortality. In California, however, Jerrett et al. 
(2013) found positive associations between 
NO2 and lung cancer, but found no signifi-
cant associations with NO2 and respiratory 
mortality in either single- or joint-pollutant 
models with O3 and PM2.5.
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The e s t imated  a s soc ia t ions  wi th 
nonaccidental mortality and both PM2.5 
and O3 were stronger in males than in 
females, nonimmigrants compared with 
immigrants, and among those in the lowest 
versus highest income quintile. Associations 
with nonaccidental mortality and NO2 were 
also stronger among those in the lowest 
versus highest income quintile. We found 
evidence of effect modification by age with 
PM2.5 (among men), O3 (among both men 
and women), and NO2 (among men). There 
have been few, and mixed, reports on effect 
modification by age in the association between 
air pollution and mortality. In their study of 
NO2 and mortality in three Canadian cities, 
Chen et al. (2013) found no evidence of effect 
modification by age, but they did not stratify 
by sex. Conversely, Cesaroni et al. (2013) 
reported stronger associations between NO2 
and mortality from nonaccidental causes 
among younger subjects in their large Italian 
cohort. It is also somewhat perplexing that for 
PM2.5 and O3 we found stronger associations 
with mortality among nonimmigrants, but 
for NO2, associations were stronger among 
immigrants. Part of this pattern could be 
explained by the fact that immigrants tend to 
be healthier than nonimmigrant Canadians 
(Ng 2011) and that they tend to congregate 
in larger cities where concentrations of NO2 
are generally higher. It is challenging to study 
and to understand health outcomes among 
Canadian immigrants broadly, because there 
is substantial heterogeneity in health outcomes 
within immigrant subgroups by birthplace, by 
area of residence in Canada, and by period of 
immigration (Ng 2011). The role of age and 
immigrant status in modifying associations 
between individual pollutants and mortality 
merits further investigation.

Most of our other findings are generally 
consistent with those reported elsewhere. For 
example, we found essentially no associations 
with cerebrovascular mortality in any of our 
models. A recent meta-analysis on long-term 
exposures to ambient air pollution and all-
cause mortality (Hoek et al. 2013) reported 
pooled HRs (per 10 μg/m3) based on cohort 
studies conducted around the world of 
1.06 (95% CI: 1.04, 1.08) with PM2.5 and 
of 1.05 (95% CI: 1.03, 1.08) with NO2. In 
our comparable models for nonaccidental 
mortality—and calculated per increment in 
exposure of 10 μg/m3—we found HR = 1.07 
(95%  CI: 1.06,  1.08) with PM2.5 and 
HR = 1.03 (95% CI: 1.03, 1.04) with NO2; 
both of which fit within the ranges reported in 
that meta-analysis. As we have outlined earlier, 
there are many differences between the study 
design of this and our previous CanCHEC 
analysis, including the addition of immi-
grants. Here we found strong effect modifica-
tion by immigrant status, and in models for 

nonaccidental mortality excluding immigrants, 
we found HR per 10 μg/m3 = 1.10 (95% CI: 
1.08, 1.11), which is very close to that reported 
in the most comparable model from our earlier 
study (HR = 1.11; 95% CI: 1.10, 1.12).

A key strength of this study is the large 
size of this population-based cohort, as well 
as the fact that we included subjects from 
all across Canada—including those in 
rural and remote, northern locations. We 
were able to adjust directly and indirectly 
for many individual and contextual risk 
factors for mortality, although we did lack 
data on smoking, obesity, physical activity, 
and alcohol consumption, among other 
potential confounders. Similar to what has 
been reported elsewhere (Chen et al. 2013; 
Villeneuve et  al. 2013), indirect adjust-
ment for smoking behaviour and obesity 
had very little impact on the HRs (generally 
in the range of 1–2% increase or decrease, 
depending on cause of death).

Another key strength of this study is 
that we were able to assign exposures to the 
representative point corresponding to the 
6-digit residential postal code of each subject 
for each year of follow-up (and up to 7 years 
preceding follow-up). This approach allowed 
us to reduce exposure misclassification bias 
that could arise when subjects move between 
different pollution environments given our 
estimates of long-term moving windows of 
exposure that took mobility patterns into 
consideration. We acknowledge, however, 
that people do not spend all of their time 
at their residence; on a daily basis they may 
commute to school or work or spend parts of 
their day in other areas of the city. As such, 
our exposure estimates cannot reflect subjects’ 
complete daily or long-term exposures.

Although we had residential location 
information for each year of follow-up, and 
we were able to recalculate the contextual 
covariates each census year, all personal covari-
ates were available only at baseline. A related 
limitation of our analysis is that our estimates 
of exposure were based on fixed periods of 
time, and may not accurately describe long-
term changes in pollutant concentrations over 
time. We also emphasize that our pollutant 
models were developed independently, with 
different predictor variables, and represent 
different time periods, leading to varying abili-
ties to adequately describe the true pollutant 
patterns and concentrations.

The results of our baseline-exposure 
analyses suggest that the benefit achieved 
(i.e., reduction in exposure misclassifica-
tion) through tracking subjects’ residential 
mobility patterns and assigning time-varying 
exposure estimates is related directly to the 
spatial resolution and spatial variability of 
the exposure estimates. In the case of O3, for 
which our exposure estimates were based on a 

very broad 21-km spatial resolution, we found 
little difference between the results of our 
no-mobility and main cohort survival models. 
This finding also suggests that not enough 
people in our main cohort were moving to 
or from areas characterized by substantially 
different levels of O3 to produce HRs substan-
tially different from those produced in models 
that assumed that the baseline exposure 
represented long-term exposures. In the case 
of NO2, however, the weaker associations in 
models not incorporating mobility are consis-
tent with finer spatial variation captured by 
our NO2 models. This suggests that mobility 
within a small area such as a city may be 
important for fine-scale exposure models but 
not as important for those models defined at a 
broader spatial scale.

As shown in our concentration–response 
plots, associations with nonaccidental 
mortality increase monotonically throughout 
the concentration range, as evidenced by the 
natural spline fit.

Conclusions
Our results provide evidence that long-term 
exposures to three key components of ambient 
air pollution are associated with increased 
risk of nonaccidental and cause-specific 
mortality. Our cumulative risk models suggest 
that exposure to PM2.5 alone does not fully 
characterize the toxicity of the atmospheric 
mix or fully explain the risk of mortality 
associated with exposure to ambient pollu-
tion. Correlations between the pollutants 
do, however, make it challenging to tease 
out the independent contributions to risk of 
mortality of each pollutant. Our cumulative 
risk estimates, however, describe associations 
with the overall mixture of pollutants more 
effectively than do the estimates from the 
multiple-pollutant models. These observa-
tions suggest that efforts should be made to 
model the toxicity of atmospheric mixtures 
when modeling population burden of disease 
attributable to air pollution exposure.
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