68 research outputs found

    Factors affecting success of conservation translocations of terrestrial vertebrates: a global systematic review

    Get PDF
    Translocation—moving individuals for release in different locations—is among the most important conservation interventions for increasing or re-establishing populations of threatened species. However, translocations often fail. To improve their effectiveness, we need to understand the features that distinguish successful from failed translocations. We assembled and analysed a global database of translocations of terrestrial vertebrates (n = 514) to assess the effects of various design features and extrinsic factors on success. We analysed outcomes using standardised metrics: a categorical success/failure classification; and population growth rate. Probability of categorical success and population growth rate increased with the total number of individuals released but with diminishing returns above about 20–50 individuals. Positive outcomes—categorical success and high population growth—were less likely for translocations in Oceania, possibly because invasive species are a major threat in this region and are difficult to control at translocation sites. Rates of categorical success and population growth were higher in Europe and North America than elsewhere, suggesting the key role of context in positive translocation outcomes. Categorical success has increased throughout the 20th century, but that increase may have plateaued at about 75% since about 1990. Our results suggest there is potential for further increase in the success of conservation translocations. This could be best achieved by greater investment in individual projects, as indicated by total number of animals released, which has not increased over time.Shane D. Morris, Barry W. Brook, Katherine E. Moseby, Christopher N. Johnso

    Use of secondary forests by understory birds in a fragmented landscape in central Amazonia

    Get PDF
    Rates of deforestation in the Brazilian Amazon have increased since 1991 and forecasts are not optimistic about the slowing of this process. Some authors believe that the Amazon may be experiencing a massive process of species extinction. However, the deforestation is accompanied by the expansion of secondary forests that are established in the abandoned areas. The trend is an increase in secondary forests cover, resulting in a mosaic of primary forest (FP) and fragments separated by an array of secondary forests (FS). In this scenario, the prediction of a massive extinction could be wrong if many species could survive in the secondary forests. To assess the importance of FS for the understory birds we sampled areas in regeneration and a continuous forest of a fragmented landscape. We conducted mist netting (24 nets/day) for six consecutive days/month, for 8 months (May-November) in 2009. Some forest species as do not seem to be adapted to the secondary forest environment and their occurrences are restricted to continuous forest environments. But most focal species showed no significant difference in apparent survival rates between the enviroments, suggesting that these species inhabit the secondary forest and the primary forest similarly. Because most of the matrix in fragmented landscapes are composed by secondary forests, such results highlights the conservation value that these habitats present in the long term. Thus, FS should be regarded as dynamic matrix that not only allows the movement of individuals but also function as habitat for many species typical of FP.Na Amazônia, as taxas de desmatamento crescem desde 1991 e as previsões não são otimistas quanto à desaceleração desse processo. A devastação da floresta é acompanhada de uma expansão de florestas secundárias (FS) que se estabelecem nas áreas abandonadas. A tendência é um aumento de florestas secundárias, resultando num mosaico de floresta contínua e fragmentos separados por uma matriz de FS. Nesse cenário, autores acreditam que a Amazônia pode passar por um processo massivo de extinção de espécies. Por outro lado, a previsão de um processo massivo de extinção pode ser equivocada, pois muitas espécies florestais poderiam sobreviver nas florestas secundárias. Para avaliar o valor das florestas secundárias para espécies florestais amostramos por oito meses com redes de neblina uma capoeira (FS) em regeneração e uma floresta primária (FP) de uma paisagem fragmentada. Algumas espécies não foram capturadas na capoeira e aparentemente evitam esse tipo de hábitat. No entanto, a maioria das espécies do grupo focal não apresentou diferença na sobrevivência aparente entre os ambientes, o que nos indica que estão habitando a capoeira e a floresta primária da mesma forma. Na realidade amazônica, onde grande parte da matriz é composta por floresta secundária, a matriz tem valor para conservação e deve ser analisada como um elemento dinâmico que não apenas permite a movimentação de indivíduos, mas também serve de hábitat para muitas espécies de floresta primária. Mas ressaltamos que é fundamental a preservação de áreas de floresta primária que servirão de fonte às florestas secundárias adjacentes

    Climate Change Biology. By Lee Hannah. Academic Press. Amsterdam and Boston (Massachusetts): Elsevier. $59.95

    No full text
    Book reviewBarry W. Broo

    Forecasting future global food demand: a systematic review and meta-analysis of model complexity

    No full text
    Predicting future food demand is a critical step for formulating the agricultural, economic and conservation policies required to feed over 9 billion people by 2050 while doing minimal harm to the environment. However, published future food demand estimates range substantially, making it difficult to determine optimal policies. Here we present a systematic review of the food demand literature-including a meta-analysis of papers reporting average global food demand predictions-and test the effect of model complexity on predictions. We show that while estimates of future global kilocalorie demand have a broad range, they are not consistently dependent on model complexity or form. Indeed, time-series and simple income-based models often make similar predictions to integrated assessments (e.g., with expert opinions, future prices or climate influencing forecasts), despite having different underlying assumptions and mechanisms. However, reporting of model accuracy and uncertainty was uncommon, leading to difficulties in making evidence-based decisions about which forecasts to trust. We argue for improved model reporting and transparency to reduce this problem and improve the pace of development in this field.Emily J.Flies, Barry W.Brook, Linus Blomqvist, Jessie C.Buette

    Southeast Asian biodiversity: An impending disaster

    No full text
    10.1016/j.tree.2004.09.006Trends in Ecology and Evolution1912654-660TREE

    Flooding policy makers with evidence to save forests

    No full text
    10.1579/0044-7447-38.2.125Ambio382125-126AMBO

    Better forecasts of range dynamics using genetic data

    No full text
    The spatiotemporal response of species to past global change must be understood for adaptive management and to make useful predictions. Characteristics of past population dynamics are imprinted in genes, yet these molecular 'log books' are just beginning to be used to improve forecasts of biotic responses to climate change. This is despite there now being robust quantitative frameworks to incorporate such information. A tighter integration of genetic data into models of species range dynamics should lead to more robust and validated predictions of the response of demographic and evolutionary processes to large-scale environmental change. The use of these multidisciplinary methods will help conservation scientists to better connect theory to the on-ground design and implementation of effective measures to protect biodiversity.Damien A. Fordham, Barry W. Brook, Craig Moritz, David Nogués-Brav

    Beyond Singapore: Hong Kong and Asian biodiversity [2] (multiple letters)

    Get PDF
    10.1016/j.tree.2005.04.002Trends in Ecology and Evolution206 SPEC. ISS.281-283TREE
    corecore