18 research outputs found

    Stochastic electrodynamics simulations for collective atom response in optical cavities

    Get PDF
    We study the collective optical response of an atomic ensemble confined within a single-mode optical cavity by stochastic electrodynamics simulations that include the effects of atomic position correlations, internal level structure, and spatial variations in cavity coupling strength and atom density. In the limit of low light intensity the simulations exactly reproduce the full quantum field-theoretical description for cold stationary atoms and at higher light intensities we introduce semiclassical approximations to atomic saturation that we compare with the exact solution in the case of two atoms. We find that collective subradiant modes of the atoms, with very narrow linewidths, can be coupled to the cavity field by spatial variation of the atomic transition frequency and resolved at low intensities, and show that they can be specifically driven by tailored transverse pumping beams. We show that the cavity optical response, in particular both the subradiant mode profile and the resonance shift of the cavity mode, can be used as a diagnostic tool for the position correlations of the atoms and hence the atomic quantum many-body phase. The quantum effects are found to be most prominent close to the narrow subradiant mode resonances at high light intensities. Although an optical cavity can generally strongly enhance quantum fluctuations via light confinement, we show that the semiclassical approximation to the stochastic electrodynamics model provides at least a qualitative agreement with the exact optical response outside the subradiant mode resonances even in the presence of significant saturation of the atoms

    Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders

    Full text link
    Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5–21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eyetracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n =664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis

    Etude des effets quantiques nucléaires lors de la symétrisation de liaisons hydrogène par la méthode du bain thermique quantique

    No full text
    Increasing interest has risen for nuclear quantum effects (NQE) in the recent past. Indeed, NQE such as proton tunneling and zero point energy often play a crucial role in the properties of hydrogen-containing materials. The standard methods to simulate NQE are based on path integrals. An alternative to these methods is the Quantum Thermal Bath (QTB): it is based on a Langevin equation where the classical degrees of freedom are coupled to an ensemble of quantum harmonic oscillators. In the classical Langevin equation, the random force is a white noise and fulfills the classical fluctuation-dissipation theorem, while within the QTB formalism, it fulfills the quantum fluctuation-dissipation theorem. We investigate through simple models the reliability and the limits of the QTB and show that the QTB enables realistic simulations including NQE of condensed-phase systems, generating static and dynamic information such as pair correlation functions and vibrational spectra which can be confronted with experimental results. We show that the QTB is particularly successful in the study of the symmetrization of hydrogen bonds in several systems. Indeed, the difficulty lies in the identification of a precise transition pressure since this phase transition is often blurred by quantum or thermal fluctuations. In high-pressure ice, it depends on the oxygen-oxygen distance but it can be affected by ionic impurities and by the asymmetric environment of hydrogen bonds as in the delta phase of AlOOH. Moreover, by comparing results from QTB and standard ab initio simulations, we are able to disentangle the respective roles of NQE and thermal fluctuations in these phase transitions.L’étude des effets quantiques nucléaires (NQE) suscite de plus en plus d’intérêt. En effet, les effets quantiques comme l’effet tunnel ou l’énergie de point zéro, peuvent profondément modifier les propriétés de matériaux constitués d'atomes légers comme l'hydrogène. Les méthodes standards de simulation des NQE sont basées sur les intégrales de chemin. Le bain thermique quantique (QTB) constitue une alternative à ces méthodes: le principe est que les degrés de liberté classiques du système obéissent à une équation de Langevin et sont couplés à des oscillateurs harmoniques quantiques. Dans l’équation de Langevin classique, la force aléatoire est un bruit blanc et le théorème de fluctuation-dissipation classique est vérifié; avec le QTB, le théorème de fluctuation-dissipation quantique est vérifié. Nous étudierons à travers des modèles simples la validité et les limites du QTB et montrerons qu'il permet de simuler des systèmes de la matière condensée en incluant les NQE en générant leurs propriétés structurales et dynamiques. Nous montrerons que le QTB est particulièrement adapté à l’étude de la symétrisation de liaisons hydrogènes et permet d'identifier précisément une pression de transition. Celle-ci dépend de la distance entre deux oxygènes voisins comme dans la glace sous haute pression, mais est modifiée par la présence d'impuretés ioniques ou par l'environnement atomique des liaisons hydrogènes comme dans la phase delta de AlOOH. De plus, en comparant des simulations classiques à des simulations QTB, nous pouvons identifier les rôles respectifs des effets quantiques et thermiques dans ces transitions de phase

    Etude des effets quantiques nucléaires lors de la symétrisation de liaisons hydrogène par la méthode du bain thermique quantique

    No full text
    L’étude des effets quantiques nucléaires (NQE) suscite de plus en plus d’intérêt. En effet, les effets quantiques comme l’effet tunnel ou l’énergie de point zéro, peuvent profondément modifier les propriétés de matériaux constitués d'atomes légers comme l'hydrogène. Les méthodes standards de simulation des NQE sont basées sur les intégrales de chemin. Le bain thermique quantique (QTB) constitue une alternative à ces méthodes: le principe est que les degrés de liberté classiques du système obéissent à une équation de Langevin et sont couplés à des oscillateurs harmoniques quantiques. Dans l’équation de Langevin classique, la force aléatoire est un bruit blanc et le théorème de fluctuation-dissipation classique est vérifié; avec le QTB, le théorème de fluctuation-dissipation quantique est vérifié. Nous étudierons à travers des modèles simples la validité et les limites du QTB et montrerons qu'il permet de simuler des systèmes de la matière condensée en incluant les NQE en générant leurs propriétés structurales et dynamiques. Nous montrerons que le QTB est particulièrement adapté à l’étude de la symétrisation de liaisons hydrogènes et permet d'identifier précisément une pression de transition. Celle-ci dépend de la distance entre deux oxygènes voisins comme dans la glace sous haute pression, mais est modifiée par la présence d'impuretés ioniques ou par l'environnement atomique des liaisons hydrogènes comme dans la phase delta de AlOOH. De plus, en comparant des simulations classiques à des simulations QTB, nous pouvons identifier les rôles respectifs des effets quantiques et thermiques dans ces transitions de phase.Increasing interest has risen for nuclear quantum effects (NQE) in the recent past. Indeed, NQE such as proton tunneling and zero point energy often play a crucial role in the properties of hydrogen-containing materials. The standard methods to simulate NQE are based on path integrals. An alternative to these methods is the Quantum Thermal Bath (QTB): it is based on a Langevin equation where the classical degrees of freedom are coupled to an ensemble of quantum harmonic oscillators. In the classical Langevin equation, the random force is a white noise and fulfills the classical fluctuation-dissipation theorem, while within the QTB formalism, it fulfills the quantum fluctuation-dissipation theorem. We investigate through simple models the reliability and the limits of the QTB and show that the QTB enables realistic simulations including NQE of condensed-phase systems, generating static and dynamic information such as pair correlation functions and vibrational spectra which can be confronted with experimental results. We show that the QTB is particularly successful in the study of the symmetrization of hydrogen bonds in several systems. Indeed, the difficulty lies in the identification of a precise transition pressure since this phase transition is often blurred by quantum or thermal fluctuations. In high-pressure ice, it depends on the oxygen-oxygen distance but it can be affected by ionic impurities and by the asymmetric environment of hydrogen bonds as in the delta phase of AlOOH. Moreover, by comparing results from QTB and standard ab initio simulations, we are able to disentangle the respective roles of NQE and thermal fluctuations in these phase transitions

    The Role of Ex-POWs' PTSD Symptoms and Trajectories in Wives' Secondary Traumatization

    No full text
    Secondary traumatization describes the phenomenon whereby those in proximity to trauma survivors develop psychological symptoms similar to those experienced by the direct survivor. The current study examined secondary trauma (ST) and generalized distress symptoms (general psychiatric symptomatology, functional disability, and self-rated health) in wives of former prisoners of war (ex-POWs). The study compared wives of Israeli ex-POWs from the 1973 Yom Kippur War with wives of a matched control group of non-POW Yom Kippur War combat veterans (CVs). The wives also were divided into groups based on their husbands' current posttraumatic stress disorder (PTSD) status and PTSD trajectory (i.e., chronic, delayed), and their outcomes were compared with resilient CVs. We found that wives of ex-POWs with PTSD reported higher ST and generalized distress than wives of ex-POWs and non-POW CVs without PTSD. Wives of ex-POWs with chronic PTSD reported the highest levels of functional disability. We also found that the relationships between husbands' prior captivity, and wives' ST and general psychiatric symptomatology were fully mediated by the husbands' PTSD symptoms. These findings indicate that it is exposure to a partner with PTSD that leads to overall ST and other distress symptoms, and not simply to a trauma survivor. Furthermore, the more severe their husbands' PTSD, the more wives are at risk for ST and general psychiatric symptomatology. Wives of partners with PTSD should therefore be considered high-risk groups for ST and distress that may require targeted interventions

    Quantum-driven phase transition in ice described via an efficient Langevin approach

    No full text
    International audienceThe phase transition from ice VII to ice X under extreme pressures is an example where quantum proton delocalization coexists with classical thermal fluctuations. We investigate this transition, including quantum effects on the nuclear motion through adapted Langevin dynamics. This approach, which allows us to follow the semiclassical trajectories of protons, provides excellent agreement with experimental vibrational spectra indicating a transition pressure of about 65 GPa. Furthermore, we map the full dynamical problem onto a pressure-dependent, one-dimensional mean-field potential for the proton. By solving exactly the corresponding Schr¨odinger equation, we disentangle tunneling and quantum delocalization from classical thermal effects and identify the transition through the topological changes of the proton ground state and its susceptibility. The process is dominated by quantum effects even at ambient temperature and can be considered to be a paradigmatic case of a quantum-driven phase transition
    corecore