97 research outputs found

    Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Get PDF
    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination issues were also examined during the isolator selection period for meeting the SAGE III-ISS instrument requirements

    Control structural interaction testbed: A model for multiple flexible body verification

    Get PDF
    Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment

    Two-Stage Passive Vibration Isolator

    Get PDF
    The design and testing of a structural system were implemented to hold the optics of the planned Space Interferometry Mission (SIM) at positions and orientations characterized by vibrational translation and rotation errors of no more than a few nanometers or a few milliarcseconds, respectively. Much of the effort was devoted to a test bed for verifying the predicted behavior of a vibration- isolation structural subsystem working together with an active control system for positioning and orienting the SIM optics. There was considerable emphasis on the vibration-isolation subsystem, which was passive and comprised two stages. The main sources of vibration were six reaction wheels in an assembly denoted the "backpack." The first vibration-isolation stage consisted of hexapod isolator mounts - one for each reaction wheel - characterized by a natural vibration frequency of 10 Hz. The second stage was a set of three beams, disposed between the backpack and the structure that held the SIM optics, that were flexured such that they transmitted only bending loads, with a natural vibrational frequency and damping of about 5 Hz and 4 percent, respectively. Preliminary test results were presented and characterized as demonstrating the effectiveness of the two-stage vibration-isolation design

    ATP-sulphurylase: An enzymatic marker for biological sulphate reduction

    Get PDF
    Adenosine triphosphate-sulphurylase (ATPS) plays a major role in dissimilatory sulphate reduction. In this study, the level of ATPS activity was monitored in a time course study using a biosulphidogenic batch bioreactor system. A coincident decrease in ATPS activity with a decline in sulphate concentration and an increase in sulphide concentration as biosulphidogenesis proceeded was observed. Flask studies further showed sulphate to be stimulatory to ATPS, while sulphide proved to be inhibitory. The effect of ions (Ca^(2+), Cl^(−), Fe^(2+) and Zn^(2+)) on the ATPS activity was also investigated. Most of the ions studied (Ca^(2+), Cl^(−) and Fe^(2+)) were stimulatory at lower concentrations (40–120 mg/l) but proved toxic at higher concentrations (>120 mg/l). In contrast, Zn^(2+) was inhibitory even at low concentrations ( 40 mg/l). ATPS may potentially be used as an enzymatic marker for biological sulphate reduction in sulphate-rich wastewaters and natural environments (anaerobic systems such as soils and sediments found in freshwater and marine systems), providing all residual sulphide and interfering ions are removed using a simple preparative step

    Active Structural Elements within a General Vibration Control Framework

    Get PDF
    High-precision machines typically suffer from small but annoying vibrations. As the most appropriate solution to a particular vibration problem is not always obvious, it may be convenient to cast the problem in a more general framework. This framework may then be used for frequency response analysis, which, together with close examination of the disturbance sources, leads to a solution in general structural terms, like ‘vibration isolation’, ‘stiffness enhancement’ or ‘damping augmentation’. In case it is not possible or unpractical to control the vibration passively, a solution based on active structural elements may be considered

    Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver

    Get PDF
    BACKGROUND & AIMS: Folate and cobalamin are methyl donors needed for the synthesis of methionine, which is the precursor of S-adenosylmethionine, the substrate of methylation in epigenetic, and epigenomic pathways. Methyl donor deficiency produces liver steatosis and predisposes to metabolic syndrome. Whether impaired fatty acid oxidation contributes to this steatosis remains unknown.METHODS: We evaluated the consequences of methyl donor deficient diet in liver of pups from dams subjected to deficiency during gestation and lactation. RESULTS: The deprived rats had microvesicular steatosis, with increased triglycerides, decreased methionine synthase activity, S-adenosylmethionine, and S-adenosylmethionine/S-adenosylhomocysteine ratio. We observed no change in apoptosis markers, oxidant and reticulum stresses, and carnityl-palmitoyl transferase 1 activity, and a decreased expression of SREBP-1c. Impaired beta-oxidation of fatty acids and carnitine deficit were the predominant changes, with decreased free and total carnitines, increased C14:1/C16 acylcarnitine ratio, decrease of oxidation rate of palmitoyl-CoA and palmitoyl-L-carnitine and decrease of expression of novel organic cation transporter 1, acylCoA-dehydrogenase and trifunctional enzyme subunit alpha and decreased activity of complexes I and II. These changes were related to lower protein expression of ER-α, ERR-α and HNF-4α, and hypomethylation of PGC-1α co-activator that reduced its binding with PPAR-α, ERR-α, and HNF-4α. CONCLUSIONS: The liver steatosis resulted predominantly from hypomethylation of PGC1-α, decreased binding with its partners and subsequent impaired mitochondrial fatty acid oxidation. This link between methyl donor deficiency and epigenomic deregulations of energy metabolism opens new insights into the pathogenesis of fatty liver disease, in particular, in relation to the fetal programming hypothesis
    corecore