7 research outputs found

    Development of a silver nanocubes-based formulation for semi-conductor integration by low temperature sintering

    No full text
    Le packaging des composants Ă  semi-conducteurs reprĂ©sente aujourd'hui une part importante de la rechercheet du dĂ©veloppement de microsystĂšmes Ă©lectroniques. Les composants fabriquĂ©s sont de plus en plus performantsen terme d'exĂ©cution de calcul et le packaging doit s'adapter afin de ne pas ĂȘtre un frein au transfert de donnĂ©es.L'ensemble des Ă©tudes vise Ă  amĂ©liorer les performances Ă©lectriques et thermomĂ©caniques tout en tenant comptedu contexte environnemental actuel qui vise Ă  limiter de substances nocives pour l'homme et l'environnement.Pour cela, de nouveaux procĂ©dĂ©s d'intĂ©gration de puces semi-conductrices sur substrat diĂ©lectrique sontdĂ©veloppĂ©s. Parmi les technologies d'intĂ©gration rĂ©cemment envisagĂ©es, le frittage est un procĂ©dĂ© trĂšs prometteur.Il permet, en effet, de rĂ©aliser une jonction mĂ©tallique dense Ă  des tempĂ©ratures suffisamment basses pourl’électronique. Le frittage de micro- et/ou nanoparticules d'argent est le plus connu au regard de ses excellentespropriĂ©tĂ©s mĂ©caniques, thermiques et Ă©lectriques. Des particules de dimension nanomĂ©trique peuvent ĂȘtre, en effet,densifiĂ©es, Ă  l'aide d'un traitement thermique dont la tempĂ©rature est bien infĂ©rieure Ă  la tempĂ©rature de fusion del'argent massif, en quelques heures, avec ou sans application d'une contrainte. Cette approche est commercialisĂ©esous forme de pĂąte Ă  fritter, dont le dĂ©pĂŽt peut ĂȘtre effectuĂ© par sĂ©rigraphie ou dispense. Dans cette Ă©tude, nousexplorons comment la morphologie des particules d’argent permet d’abaisser la tempĂ©rature de frittage.Ce travail repose sur le dĂ©veloppement d’une pĂąte Ă  fritter, constituĂ©e de nanocubes d’argent calibrĂ©s en taille,pour l’intĂ©gration de semi-conducteurs Ă  basse tempĂ©rature. Des nanocubes d’argent de tailles diverses ont Ă©tĂ©prĂ©parĂ©s, par synthĂšse colloĂŻdale, en milieu polyol ou aqueux. Leur stabilitĂ© thermique a Ă©tĂ© examinĂ©e, Ă  l’échelled’un objet unique et d'une collection de particules. L'Ă©laboration de pĂątes concentrĂ©es en nanocubes d’argent apermis de diminuer significativement la tempĂ©rature du procĂ©dĂ©. Des essais de frittage ont Ă©tĂ© menĂ©s dansdiffĂ©rentes configurations: systĂšme ouvert ou fermĂ©, ainsi qu’au sein d’un dĂ©monstrateur Ă©lectrique. Lamorphologie cubique accroit la rĂ©activitĂ© des particules au niveau des coins et des arĂȘtes et favorise uneorganisation compacte des objets avant l’étape de frittage. Cela augmente leur surface de contact et le processusde frittage entre particules voisines. Ainsi, les pĂątes fabriquĂ©es Ă  base de nanocubes permettent de rĂ©aliser desinterconnexions mĂ©talliques Ă  plus basse tempĂ©rature que les technologies actuellement sur le marchĂ©.Metallic interconnection materials are of high interest in numerous power electronic packagingapplications. The manufactured components are more and more efficient in terms of calculation execution andthe packaging must adapt in order to avoid the limitation of the data transfer. All of the studies aim to improveelectrical and thermomechanical performances while taking into account the current environmental contextwhich aims to limit substances harmful to humans and the environment. For this, new methods of integratingsemiconductor dies on a dielectric substrate are being developed. Among them, sintering stands out as apromising alternative. It makes it possible to produce a dense and robust metallic junction at low temperature,compatible with an higher operating temperature. Sintering based on micro- and/or nano-silver particles is thebest known in view of its excellent mechanical, thermal and electric properties. The particles can be densifiedusing a heat treatment, at a temperature which is much lower than the melting temperature of bulk silver, in afew hours, with or without pressure. This approach is marketed in the form of sinter paste, the deposition ofwhich can be carried out by screen printing and the sintering cycle carried out in air. In this study, we explorehow the design parameters of nanoparticles can be modified to increase the efficiency of sintered Ag technology.We investigated the potential of a paste based on silver nanocubes well-calibrated in size and shape toachieve thick silver joints, sintered at low temperature and pressureless. Silver nanocubes of different sizes wereproduced by wet colloidal approaches in polyol and aqueous mediums. Their thermal stability was investigatedat the single particle level and for assemblies of multiple particles. Their integration into a printable paste alloweda reduction in the sintering temperature at ambient pressure during sintering cycles. Tests were performed forvarious electronics package designs: opened/closed configurations, as well as using an electrical demonstrator.Reducing the surface curvature and the related surface energies provides the diffusion of atoms to neighboringparticles during sintering. The cubic morphology promotes density and increases the contact surface area ofneighboring Ag particles promoting diffusion and sintering. Thus, the manufactured pastes allowed to achievemetallic interconnection at lower temperature commercial technologies

    Développement d'une formulation à base de nanocubes d'argent pour l'interconnexion de composants électroniques par frittage basse température

    No full text
    Metallic interconnection materials are of high interest in numerous power electronic packagingapplications. The manufactured components are more and more efficient in terms of calculation execution andthe packaging must adapt in order to avoid the limitation of the data transfer. All of the studies aim to improveelectrical and thermomechanical performances while taking into account the current environmental contextwhich aims to limit substances harmful to humans and the environment. For this, new methods of integratingsemiconductor dies on a dielectric substrate are being developed. Among them, sintering stands out as apromising alternative. It makes it possible to produce a dense and robust metallic junction at low temperature,compatible with an higher operating temperature. Sintering based on micro- and/or nano-silver particles is thebest known in view of its excellent mechanical, thermal and electric properties. The particles can be densifiedusing a heat treatment, at a temperature which is much lower than the melting temperature of bulk silver, in afew hours, with or without pressure. This approach is marketed in the form of sinter paste, the deposition ofwhich can be carried out by screen printing and the sintering cycle carried out in air. In this study, we explorehow the design parameters of nanoparticles can be modified to increase the efficiency of sintered Ag technology.We investigated the potential of a paste based on silver nanocubes well-calibrated in size and shape toachieve thick silver joints, sintered at low temperature and pressureless. Silver nanocubes of different sizes wereproduced by wet colloidal approaches in polyol and aqueous mediums. Their thermal stability was investigatedat the single particle level and for assemblies of multiple particles. Their integration into a printable paste alloweda reduction in the sintering temperature at ambient pressure during sintering cycles. Tests were performed forvarious electronics package designs: opened/closed configurations, as well as using an electrical demonstrator.Reducing the surface curvature and the related surface energies provides the diffusion of atoms to neighboringparticles during sintering. The cubic morphology promotes density and increases the contact surface area ofneighboring Ag particles promoting diffusion and sintering. Thus, the manufactured pastes allowed to achievemetallic interconnection at lower temperature commercial technologies.Le packaging des composants Ă  semi-conducteurs reprĂ©sente aujourd'hui une part importante de la rechercheet du dĂ©veloppement de microsystĂšmes Ă©lectroniques. Les composants fabriquĂ©s sont de plus en plus performantsen terme d'exĂ©cution de calcul et le packaging doit s'adapter afin de ne pas ĂȘtre un frein au transfert de donnĂ©es.L'ensemble des Ă©tudes vise Ă  amĂ©liorer les performances Ă©lectriques et thermomĂ©caniques tout en tenant comptedu contexte environnemental actuel qui vise Ă  limiter de substances nocives pour l'homme et l'environnement.Pour cela, de nouveaux procĂ©dĂ©s d'intĂ©gration de puces semi-conductrices sur substrat diĂ©lectrique sontdĂ©veloppĂ©s. Parmi les technologies d'intĂ©gration rĂ©cemment envisagĂ©es, le frittage est un procĂ©dĂ© trĂšs prometteur.Il permet, en effet, de rĂ©aliser une jonction mĂ©tallique dense Ă  des tempĂ©ratures suffisamment basses pourl’électronique. Le frittage de micro- et/ou nanoparticules d'argent est le plus connu au regard de ses excellentespropriĂ©tĂ©s mĂ©caniques, thermiques et Ă©lectriques. Des particules de dimension nanomĂ©trique peuvent ĂȘtre, en effet,densifiĂ©es, Ă  l'aide d'un traitement thermique dont la tempĂ©rature est bien infĂ©rieure Ă  la tempĂ©rature de fusion del'argent massif, en quelques heures, avec ou sans application d'une contrainte. Cette approche est commercialisĂ©esous forme de pĂąte Ă  fritter, dont le dĂ©pĂŽt peut ĂȘtre effectuĂ© par sĂ©rigraphie ou dispense. Dans cette Ă©tude, nousexplorons comment la morphologie des particules d’argent permet d’abaisser la tempĂ©rature de frittage.Ce travail repose sur le dĂ©veloppement d’une pĂąte Ă  fritter, constituĂ©e de nanocubes d’argent calibrĂ©s en taille,pour l’intĂ©gration de semi-conducteurs Ă  basse tempĂ©rature. Des nanocubes d’argent de tailles diverses ont Ă©tĂ©prĂ©parĂ©s, par synthĂšse colloĂŻdale, en milieu polyol ou aqueux. Leur stabilitĂ© thermique a Ă©tĂ© examinĂ©e, Ă  l’échelled’un objet unique et d'une collection de particules. L'Ă©laboration de pĂątes concentrĂ©es en nanocubes d’argent apermis de diminuer significativement la tempĂ©rature du procĂ©dĂ©. Des essais de frittage ont Ă©tĂ© menĂ©s dansdiffĂ©rentes configurations: systĂšme ouvert ou fermĂ©, ainsi qu’au sein d’un dĂ©monstrateur Ă©lectrique. Lamorphologie cubique accroit la rĂ©activitĂ© des particules au niveau des coins et des arĂȘtes et favorise uneorganisation compacte des objets avant l’étape de frittage. Cela augmente leur surface de contact et le processusde frittage entre particules voisines. Ainsi, les pĂątes fabriquĂ©es Ă  base de nanocubes permettent de rĂ©aliser desinterconnexions mĂ©talliques Ă  plus basse tempĂ©rature que les technologies actuellement sur le marchĂ©

    Development of a silver nanocubes-based formulation for semi-conductor integration by low temperature sintering

    No full text
    Le packaging des composants Ă  semi-conducteurs reprĂ©sente aujourd'hui une part importante de la rechercheet du dĂ©veloppement de microsystĂšmes Ă©lectroniques. Les composants fabriquĂ©s sont de plus en plus performantsen terme d'exĂ©cution de calcul et le packaging doit s'adapter afin de ne pas ĂȘtre un frein au transfert de donnĂ©es.L'ensemble des Ă©tudes vise Ă  amĂ©liorer les performances Ă©lectriques et thermomĂ©caniques tout en tenant comptedu contexte environnemental actuel qui vise Ă  limiter de substances nocives pour l'homme et l'environnement.Pour cela, de nouveaux procĂ©dĂ©s d'intĂ©gration de puces semi-conductrices sur substrat diĂ©lectrique sontdĂ©veloppĂ©s. Parmi les technologies d'intĂ©gration rĂ©cemment envisagĂ©es, le frittage est un procĂ©dĂ© trĂšs prometteur.Il permet, en effet, de rĂ©aliser une jonction mĂ©tallique dense Ă  des tempĂ©ratures suffisamment basses pourl’électronique. Le frittage de micro- et/ou nanoparticules d'argent est le plus connu au regard de ses excellentespropriĂ©tĂ©s mĂ©caniques, thermiques et Ă©lectriques. Des particules de dimension nanomĂ©trique peuvent ĂȘtre, en effet,densifiĂ©es, Ă  l'aide d'un traitement thermique dont la tempĂ©rature est bien infĂ©rieure Ă  la tempĂ©rature de fusion del'argent massif, en quelques heures, avec ou sans application d'une contrainte. Cette approche est commercialisĂ©esous forme de pĂąte Ă  fritter, dont le dĂ©pĂŽt peut ĂȘtre effectuĂ© par sĂ©rigraphie ou dispense. Dans cette Ă©tude, nousexplorons comment la morphologie des particules d’argent permet d’abaisser la tempĂ©rature de frittage.Ce travail repose sur le dĂ©veloppement d’une pĂąte Ă  fritter, constituĂ©e de nanocubes d’argent calibrĂ©s en taille,pour l’intĂ©gration de semi-conducteurs Ă  basse tempĂ©rature. Des nanocubes d’argent de tailles diverses ont Ă©tĂ©prĂ©parĂ©s, par synthĂšse colloĂŻdale, en milieu polyol ou aqueux. Leur stabilitĂ© thermique a Ă©tĂ© examinĂ©e, Ă  l’échelled’un objet unique et d'une collection de particules. L'Ă©laboration de pĂątes concentrĂ©es en nanocubes d’argent apermis de diminuer significativement la tempĂ©rature du procĂ©dĂ©. Des essais de frittage ont Ă©tĂ© menĂ©s dansdiffĂ©rentes configurations: systĂšme ouvert ou fermĂ©, ainsi qu’au sein d’un dĂ©monstrateur Ă©lectrique. Lamorphologie cubique accroit la rĂ©activitĂ© des particules au niveau des coins et des arĂȘtes et favorise uneorganisation compacte des objets avant l’étape de frittage. Cela augmente leur surface de contact et le processusde frittage entre particules voisines. Ainsi, les pĂątes fabriquĂ©es Ă  base de nanocubes permettent de rĂ©aliser desinterconnexions mĂ©talliques Ă  plus basse tempĂ©rature que les technologies actuellement sur le marchĂ©.Metallic interconnection materials are of high interest in numerous power electronic packagingapplications. The manufactured components are more and more efficient in terms of calculation execution andthe packaging must adapt in order to avoid the limitation of the data transfer. All of the studies aim to improveelectrical and thermomechanical performances while taking into account the current environmental contextwhich aims to limit substances harmful to humans and the environment. For this, new methods of integratingsemiconductor dies on a dielectric substrate are being developed. Among them, sintering stands out as apromising alternative. It makes it possible to produce a dense and robust metallic junction at low temperature,compatible with an higher operating temperature. Sintering based on micro- and/or nano-silver particles is thebest known in view of its excellent mechanical, thermal and electric properties. The particles can be densifiedusing a heat treatment, at a temperature which is much lower than the melting temperature of bulk silver, in afew hours, with or without pressure. This approach is marketed in the form of sinter paste, the deposition ofwhich can be carried out by screen printing and the sintering cycle carried out in air. In this study, we explorehow the design parameters of nanoparticles can be modified to increase the efficiency of sintered Ag technology.We investigated the potential of a paste based on silver nanocubes well-calibrated in size and shape toachieve thick silver joints, sintered at low temperature and pressureless. Silver nanocubes of different sizes wereproduced by wet colloidal approaches in polyol and aqueous mediums. Their thermal stability was investigatedat the single particle level and for assemblies of multiple particles. Their integration into a printable paste alloweda reduction in the sintering temperature at ambient pressure during sintering cycles. Tests were performed forvarious electronics package designs: opened/closed configurations, as well as using an electrical demonstrator.Reducing the surface curvature and the related surface energies provides the diffusion of atoms to neighboringparticles during sintering. The cubic morphology promotes density and increases the contact surface area ofneighboring Ag particles promoting diffusion and sintering. Thus, the manufactured pastes allowed to achievemetallic interconnection at lower temperature commercial technologies

    Inkjet Printing of All Aqueous Inks to Flexible Microcapacitors for High-Energy Storage

    No full text
    Due to the low energy density of commercial printable dielectrics, printed capacitors occupy a significant printing area and weight in fully printed electronics. It has long remained challenging to develop novel dielectric materials with printability and high energy-storage density. Here, we present the inkjet printing of all aqueous colloidal inks to dielectric capacitors composed of carbon nanotube electrodes and polyvinylidene fluoride (PVDF)-based dielectrics. The formulated dielectric ink is composed of PVDF latex particles coated by protonated chitosan molecules. Beyond the isoelectric point, the ink demonstrates excellent printability and film-forming properties. Chitosan serves as a strong binder to largely improve the printed film quality yet it introduces charged species. To confine the transport of these mobile charges, the printed PVDF@Chitosan layer was interlayered by a boron nitride nanosheet nanolayer. This layer is perpendicular to the electric field and serves as an efficient barrier to block the transport and the avalanche of charges, eventually leading to a recoverable energy density of 15 J/cm3 at 610 MV/m. This energy density represents the highest value among the waterborne dielectrics. It is also superior to most of the state-of-the-art printed dielectric materials from solvent-based formulations

    Inkjet Printing of All Aqueous Inks to Flexible Microcapacitors for High‐Energy Storage

    No full text
    International audienceDue to the low energy density of commercial printable dielectrics, printed capacitors occupy a significant printing area and weight in printed electronics. It has long remained challenging to develop novel dielectric materials with printability and high energy-storage density. Here, we present a novel strategy for inkjet printing of all aqueous colloidal inks to dielectric capacitors composed of carbon nanotube electrodes and polyvinylidene fluoride (PVDF)-based dielectrics. The formulated dielectric ink is composed of negatively charged PVDF latex nanoparticles complexed with cationic chitosan molecules. Beyond the isoelectric point, the PVDF@Chitosan particles demonstrate excellent printability and film-forming properties. Chitosan serves as a strong binder to improve the printed film quality yet it introduces charged species. To mitigate the transport of mobile charges, we interlayer the printed PVDF@Chitosan film with a layer of boron nitride nanosheets. This layer is perpendicular to the electric field and serves as an efficient barrier to block the transport and the avalanche of charges, eventually leading to a recoverable energy density of 15 J cm-3 at 610 MV m-1. This energy density represents the highest value among the waterborne dielectrics. It is also superior to most of the state-of-the-art dielectric materials printed from solvent-based formulations

    Improved low temperature sinter bonding using silver nanocube superlattices

    No full text
    International audienceWe examined the potential of silver nanocubes to achieve sintered conductive junctions for applications in microelectronics and die-attach bonding devices. For such applications, it remains a challenge to achieve dense and robust joints, sintered at low temperature (<200 °C). The minimum sintering temperature is strongly dependent on the particle shape, interparticle distance, and surface energy. In this respect, nanocubes offer two advantages over nanospheres: a higher proportion of surface atoms and the ability to assemble into denser 3D colloidal packings. Here, we used a colloidal approach to create joints using 3D close-packed arrays of silver nanocubes of different edge lengths (from 20 to 60 nm). Starting from monodisperse nanocubes, we assembled them into close-packed supercrystals by drop-casting and investigated their thermal stability and electrical properties on silicon nitride substrates. Spectroscopic measurements allowed a correlation of the plasmonic signature with the length and the degree of corner curvature of the cubes. Using electron microscopy and electrical measurements, we studied the impact of the nanocube size on the sintering temperature and electric properties of the self-organized arrays. The small gaps between the building units yielded uniform sintered patterns possessing high electrical conductivity. More broadly, our approach shows how Ag particles featuring a high density of low-coordination surface atoms, separated by small gaps, increase the efficiency of sintered Ag technology for microelectronics

    Low-temperature silver sintering by colloidal approach

    No full text
    ISBN 978-1-7281-6293-5International audienceThe interest of silver nanostructures has surged in recent years as they are becoming promising materials in a growing number of applications. In particular, they have received intense attention for their use as lead-free die attach materials, photoactive devices engineering or more broadly electronic packaging. One of the challenges is the elaboration of conductive and printable patterns by Low-Temperature and Pressureless Sintering Techniques (LTPST) to achieve electric circuits on heat-sensitive substrates such as paper, plastic, polymeric substrates. Here, we present a facile method for synthesizing conductive patterns at low temperature based on the formation of self-assembled Ag nanocubes on Active Metal Brazing (AMB) substrates. The elaboration of 3-D arrays with nanogap of 2-3 nm between the cubic building units allows to get dense and compact packed nanoparticle solids which sinter at lower temperature than conventional commercial silver pastes. The impact of the capping agent and the size of the building units on the sintering properties were investigated and discussed
    corecore