56 research outputs found

    Continuous versus discrete data analysis for gait evaluation of horses with induced bilateral hindlimb lameness

    Get PDF
    Background Gait kinematics measured during equine gait analysis are typically evaluated by analysing (asymmetry-based) discrete variables (eg, peak values) obtained from continuous kinematic signals (eg, timeseries of datapoints). However, when used for the assessment of complex cases of lameness, such as bilateral lameness, discrete variable analysis might overlook relevant functional adaptations. Objectives The overall aim of this paper is to compare continuous and discrete data analysis techniques to evaluate kinematic gait adaptations to lameness. Study design Method comparison. Methods Sixteen healthy Shetland ponies, enrolled in a research programme in which osteochondral defects were created on the medial trochlear ridges of both femurs, were used in this study. Kinematic data were collected at trot on a treadmill before and at 3 and 6 months after surgical intervention. Statistical parametric mapping and linear mixed models were used to compare kinematic variables between and within timepoints. Results Both continuous and discrete data analyses identified changes in pelvis and forelimb kinematics. Discrete data analyses showed significant changes in hindlimb and back kinematics, where such differences were not found to be significant by continuous data analysis. In contrast, continuous data analysis provided additional information on the timing and duration of the differences found. Main limitations A limited number of ponies were included. Conclusions The use of continuous data provides additional information regarding gait adaptations to bilateral lameness that is complementary to the analysis of discrete variables. The main advantage lies in the additional information regarding time dependence and duration of adaptations, which offers the opportunity to identify functional adaptations during all phases of the stride cycle, not just the events related to peak values

    Регіональні й глобальні наслідки незалежності Косово

    Get PDF
    У статті розглянуто регіональні й міжнародні аспекти проголошення незалежності Косово. Проаналізовано конфліктні аспекти косовської проблеми у регіональному й глобальному контекстах.В статье рассматриваются региональные и международные аспекты провозглашения независимости Косово. Проанализировано конфликтные аспекты косовской проблемы в региональном и глобальном контекстах.The article presents the regional and international aspects of Kosovo Independents. Special attention is to the conflict of Kosovo in the regional and global context

    Характер просторового розташування етносів по теренах Одеської області (друга половина ХХ ст.)

    Get PDF
    Background: Axial osteitis of the proximal sesamoid bones and desmitis of the intersesamoidean ligament has been described in Friesian horses as well as in other breeds. The objectives of this study were to review the outcome of clinical cases of this disease in Friesian horses and analyse the pathology of the bone-ligament interface. Case records of Friesian horses diagnosed with axial osteitis of the proximal sesamoid bones and desmitis of the intersesamoidean ligament in the period 2002-2012 were retrospectively evaluated. Post-mortem examination was performed on horses that were euthanized (n = 3) and included macroscopic necropsy (n = 3), high-field (9.4 Tesla) magnetic resonance imaging (n = 1) and histopathology (n = 2). Results: Twelve horses were included, aged 6.8 +/- 2.7 years. The hindlimb was involved in all cases. Lameness was acute in onset and severe, with a mean duration of 1.9 +/- 1.0 months. Three horses were euthanized after diagnosis; 9 horses underwent treatment. Two horses (22%) became sound for light riding purposes, 2 horses (22%) became pasture sound (comfortable at pasture, but not suitable for riding), 5 horses (56%) remained lame. In addition to bone resorption at the proximo-axial margin of the proximal sesamoid bones, magnetic resonance imaging and histopathology showed osteoporosis of the peripheral compact bone and spongious bone of the proximal sesamoid bones and chronic inflammation of the intersesamoidean ligament. Conclusions: Axial osteitis of the proximal sesamoid bones and desmitis of the intersesamoidean ligament in the hindlimb of Friesian horses carries a poor prognosis. Pathological characterization (inflammation, proximo-axial bone resorption and remodelling of the peripheral compact bone and spongious bone of the proximal sesamoid bones) may help in unravelling the aetiology of this disease

    T2* mapping in an equine articular groove model - visualizing changes in collagen orientation

    Get PDF
    T2* mapping is promising for the evaluation of articular cartilage collagen. In this work, a groove model in a large animal is used as a model for post-traumatic arthritis. We hypothesized that T2* mapping could be employed to differentiate between healthy and (subtly) damaged cartilage. Eight carpal joints were obtained from four adult Shetland ponies that had been included in the groove study. In this model, grooves were surgically created on the proximal articular surface of the intermediate carpal bone (radiocarpal joint) and the radial facet of the third carpal bone (middle carpal joint) by either coarse disruption or sharp incision. After nine months, T2* mapping of the entire carpal joint was carried out on a 7.0T whole body magnetic resonance imaging (MRI) scanner by means of a gradient echo multi echo sequence. Afterwards, assessment of collagen orientation was carried out based on Picrosirius Red-stained histological sections, visualized by polarized light microscopy (PLM). The average T2* relaxation time in grooved samples was lower than in contralateral control sites. Opposite to the grooved areas, the "kissing sites" had a higher average T2* relaxation time than the grooved sites. PLM showed mild changes in orientation of the collagen fibers, particularly around blunt grooves. This work shows that T2* relaxation times are different in healthy cartilage versus (early) damaged cartilage, as induced by the equine groove model. Additionally, the average T2* relaxation times are different in kissing lesions versus the grooved sites. This article is protected by copyright. All rights reserved

    Critical-sized cartilage defects in the equine carpus

    Get PDF
    Aim: The horse joint, due to its similarity with the human joint, is the ultimate model for translational articular cartilage repair studies. This study was designed to determine the critical size of cartilage defects in the equine carpus and serve as a benchmark for the evaluation of new cartilage treatment options. Material and Methods: Circular full-thickness cartilage defects with a diameter of 2, 4, and 8 mm were created in the left middle carpal joint and similar osteochondral (3.5 mm in depth) defects in the right middle carpal joint of 5 horses. Spontaneously formed repair tissue was examined macroscopically, with MR and mu CT imaging, polarized light microscopy, standard histology, and immunohistochemistry at 12 months. Results: Filling of 2 mm chondral defects was good (77.8 +/- 8.5%), but proteoglycan depletion was evident in Safranin-O staining and gadolinium-enhanced MRI (T-1Gd). Larger chondral defects showed poor filling (50.6 +/- 2.7% in 4 mm and 31.9 +/- 7.3% in 8 mm defects). Lesion filling in 2, 4, and 8 mm osteochondral defects was 82.3 +/- 3.0%, 68.0 +/- 4.6% and 70.8 +/- 15.4%, respectively. Type II collagen staining was seen in 9/15 osteochondral defects but only in 1/15 chondral defects. Subchondral bone pathologies were evident in 14/15 osteochondral samples but only in 5/15 chondral samples. Although osteochondral lesions showed better neotissue quality than chondral lesions, the overall repair was deemed unsatisfactory because of the subchondral bone pathologies. Conclusion: We recommend classifying 4 mm as critical osteochondral lesion size and 2 mm as critical chondral lesion size for cartilage repair research in the equine carpal joint model.Peer reviewe

    Adaptations in equine axial movement and muscle activity occur during induced fore- and hindlimb lameness: a kinematic and electromyographic evaluation during in-hand trot

    Get PDF
    Background: The inter-relationship between equine thoracolumbar motion and muscle activation during normal locomotion and lameness is poorly understood. Objective: To compare thoracolumbar and pelvic kinematics and longissimus dorsi (longissimus) activity of trotting horses between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness. Study design: Controlled experimental cross-over study. Methods: Three-dimensional kinematic data from the thoracolumbar vertebrae and pelvis, and bilateral surface electromyography (sEMG) data from longissimus at T14 and L1, were collected synchronously from clinically nonlame horses (n = 8) trotting overground during a baseline evaluation, and during iFL and iHL conditions (2–3/5 AAEP), induced on separate days using a lameness model (modified horseshoe). Motion asymmetry parameters, maximal thoracolumbar flexion/extension and lateral bending angles, and pelvis range of motion (ROM) were calculated from kinematic data. Normalised average rectified value (ARV) and muscle activation onset, offset and activity duration were calculated from sEMG signals. Mixed model analysis and statistical parametric mapping compared discrete and continuous variables between conditions (α = 0.05). Results: Asymmetry parameters reflected the degree of iFL and iHL. Maximal thoracolumbar flexion and pelvis pitch ROM increased significantly following iFL and iHL. During iHL, peak lateral bending increased towards the nonlame side (NLS) and decreased towards the lame side (LS). Longissimus ARV significantly increased bilaterally at T14 and L1 for iHL, but only at LS L1 for iFL. Longissimus activation was significantly delayed on the NLS and precipitated on the LS during iHL, but these clear phasic shifts were not observed in iFL. Main limitations: Findings should be confirmed in clinical cases. Conclusions: Distinctive, significant adaptations in thoracolumbar and pelvic motion and underlying longissimus activity occur during iFL and iHL and are detectable using combined motion capture and sEMG. For iFL, these adaptations occur primarily in a cranio-caudal direction, whereas for iHL, lateral bending and axial rotation are also involved

    Site- and Zone-Dependent Changes in Proteoglycan Content and Biomechanical Properties of Bluntly and Sharply Grooved Equine Articular Cartilage

    Get PDF
    In this study, we mapped and quantified changes of proteoglycan (PG) content and biomechanical properties in articular cartilage in which either blunt or sharp grooves had been made, both close to the groove and more remote of it, and at the opposing joint surface (kissing site) in equine carpal joints. In nine adult Shetland ponies, standardized blunt and sharp grooves were surgically made in the radiocarpal and middle carpal joints of a randomly chosen front limb. The contralateral control limb was sham-operated. At 39 weeks after surgery, ponies were euthanized. In 10 regions of interest (ROIs) (six remote from the grooves and four directly around the grooves), PG content as a function of tissue-depth and distance-to-groove was estimated using digital densitometry. Biomechanical properties of the cartilage were evaluated in the six ROIs remote from the grooves. Compared to control joints, whole tissue depth PG loss was found in sites adjacent to sharp and, to a larger extent, blunt grooves. Also, superficial PG loss of the surgically untouched kissing cartilage layers was observed. Significant PG loss was observed up to 300 µm (sharp) and at 500 µm (blunt) from the groove into the surrounding tissue. Equilibrium modulus was lower in grooved cartilage than in controls. Grooves, in particular blunt grooves, gave rise to severe PG loss close to the grooved sites and to mild degeneration more remote from the grooves in both sharply and bluntly grooved cartilage and at the kissing sites, resulting in loss of mechanical strength over the 9-month period

    Penetration of topically administered dexamethasone disodium phosphate and prednisolone acetate into the normal equine ocular fluids

    Get PDF
    Background: Topical dexamethasone and prednisolone are currently the mainstay treatment for equine ophthalmic inflammatory diseases, such as equine recurrent uveitis. Comparative pharmacokinetic studies in horses are lacking and current guidelines are mainly based on empirical data and extrapolation from other species. Objectives: To investigate the penetration and local concentrations of topically applied dexamethasone and prednisolone in normal equine ocular fluids and serum. Study design: Prospective randomised experimental pharmacokinetic study. Methods: Twenty-one Shetland ponies without ophthalmic disease were treated bilaterally topically every 2 hours during 24 hours to obtain steady state drug concentrations. One eye was treated with 0.15 mg of dexamethasone disodium phosphate (0.1%), and the other eye was simultaneously treated with 1.5 mg of prednisolone acetate (1%). Serum samples were taken prior to the induction of general anaesthesia. Aqueous and vitreous humour samples were taken during euthanasia at time points after administration of the last dose (t = 5 min, t = 15 min, t = 30 min, t = 60 min, t = 90 min, t = 120 min, t = 180 min). Each pony was randomly assigned to one time point, and three ponies were sampled per time point. Dexamethasone and prednisolone concentrations were measured by liquid chromatography-mass spectrometry. Results: The mean dexamethasone concentration in aqueous humour was 32.4 ng/mL (standard deviation [SD] 10.9) and the mean prednisolone concentration was 321.6 ng/mL (SD 96.0). In the vitreous and in serum samples concentrations of both corticosteroids were below the limit of detection (LOD 2.5 ng/mL). Main limitations: The study group was limited to subjects without evidence of current ophthalmic disease. A limited number of time points were measured. Conclusions: Potentially effective dexamethasone and prednisolone concentrations were measured in the anterior chamber, but vitreal concentrations were negligible. Systemic uptake was low. Therefore, treatment with only topically administered corticosteroids is deemed insufficient in horses in cases of posterior uveitis. Further studies evaluating other routes of administration are warranted

    Dual-contrast computed tomography enables detection of equine posttraumatic osteoarthritis in vitro

    Get PDF
    To prevent the progression of posttraumatic osteoarthritis, assessment of cartilage composition is critical for effective treatment planning. Posttraumatic changes include proteoglycan (PG) loss and elevated water content. Quantitative dual-energy computed tomography (QDECT) provides a means to diagnose these changes. Here, we determine the potential of QDECT to evaluate tissue quality surrounding cartilage lesions in an equine model, hypothesizing that QDECT allows detection of posttraumatic degeneration by providing quantitative information on PG and water contents based on the partitions of cationic and nonionic agents in a contrast mixture. Posttraumatic osteoarthritic samples were obtained from a cartilage repair study in which full-thickness chondral defects were created surgically in both stifles of seven Shetland ponies. Control samples were collected from three nonoperated ponies. The experimental (n = 14) and control samples (n = 6) were immersed in the contrast agent mixture and the distributions of the agents were determined at various diffusion time points. As a reference, equilibrium moduli, dynamic moduli, and PG content were measured. Significant differences (p < 0.05) in partitions between the experimental and control samples were demonstrated with cationic contrast agent at 30 min, 60 min, and 20 h, and with non-ionic agent at 60 and 120 min. Significant Spearman's rank correlations were obtained at 20 and 24 h (rho = 0.482-0.693) between the partition of cationic contrast agent, cartilage biomechanical properties, and PG content. QDECT enables evaluation of posttraumatic changes surrounding a lesion and quantification of PG content, thus advancing the diagnostics of the extent and severity of cartilage injuries

    Machine learning augmented near-infrared spectroscopy: In vivo follow-up of cartilage defects

    Get PDF
    OBJECTIVE: To assess the potential of near-infrared spectroscopy (NIRS) for in vivo arthroscopic monitoring of cartilage defects. METHOD: Sharp and blunt cartilage grooves were induced in the radiocarpal and intercarpal joints of Shetland ponies and monitored at baseline (0 weeks) and at three follow-up time points (11, 23, and 39 weeks) by measuring near-infrared spectra in vivo at and around the grooves. The animals were sacrificed after 39 weeks and the joints were harvested. Spectra were reacquired ex vivo to ensure reliability of in vivo measurements and for reference analyses. Additionally, cartilage thickness and instantaneous modulus were determined via computed tomography and mechanical testing, respectively. The relationship between the ex vivo spectra and cartilage reference properties was determined using convolutional neural network. RESULTS: For the independent test, the trained networks yielded significant correlations for cartilage thickness (ρ=0.473) and instantaneous modulus (ρ=0.498). These networks were used to predict the reference properties at baseline and follow-ups. In the radiocarpal joint, cartilage thickness increased significantly with both groove types after baseline and remained swollen. Additionally, at 39 weeks, a significant difference was observed in cartilage thickness between controls and sharp grooves. For the instantaneous modulus, significant decrease was observed with both groove types in the radiocarpal joint from baseline to 23 and 39 weeks. CONCLUSION: NIRS combined with machine learning enabled determination of cartilage properties in vivo, thereby providing longitudinal evaluation of post-intervention injury development. Additionally, radiocarpal joints demonstrated more vulnerability to cartilage degeneration after damage than intercarpal joints
    corecore