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Machine learning augmented near-infrared spectroscopy: In vivo
follow-up of cartilage defects
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s u m m a r y

Objective: To assess the potential of near-infrared spectroscopy (NIRS) for in vivo arthroscopic monitoring
of cartilage defects.
Method: Sharp and blunt cartilage grooves were induced in the radiocarpal and intercarpal joints of
Shetland ponies and monitored at baseline (0 weeks) and at three follow-up timepoints (11, 23, and 39
weeks) by measuring near-infrared spectra in vivo at and around the grooves. The animals were sacri-
ficed after 39 weeks and the joints were harvested. Spectra were reacquired ex vivo to ensure reliability
of in vivo measurements and for reference analyses. Additionally, cartilage thickness and instantaneous
modulus were determined via computed tomography and mechanical testing, respectively. The rela-
tionship between the ex vivo spectra and cartilage reference properties was determined using con-
volutional neural network.
Results: In an independent test set, the trained networks yielded significant correlations for cartilage
thickness (r ¼ 0.473) and instantaneous modulus (r ¼ 0.498). These networks were used to predict the
reference properties at baseline and at follow-up time points. In the radiocarpal joint, cartilage thickness
increased significantly with both groove types after baseline and remained swollen. Additionally, at 39
weeks, a significant difference was observed in cartilage thickness between controls and sharp grooves.
For the instantaneous modulus, a significant decrease was observed with both groove types in the
radiocarpal joint from baseline to 23 and 39 weeks.
Conclusion: NIRS combined with machine learning enabled determination of cartilage properties in vivo,
thereby providing longitudinal evaluation of post-intervention injury development. Additionally, radi-
ocarpal joints were found more vulnerable to cartilage degeneration after damage than intercarpal joints.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society
International. This is an open access article under the CC BY license (http://creativecommons.org/
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Introduction

Articular cartilage is an aneural and avascular tissue, making
early detection of damage challenging. Especially in young people,
traumatic and immobilizing joint injuries, which can lead to post-
traumatic osteoarthritis (PTOA), are common. Although advanced
OA has been extensively characterized, insights on the early stages
of the PTOA require further research1. To mitigate the progression
of degeneration, early detection of traumatic cartilage injuries is
esearch Society International. This is an open access article under the CC BY license
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essential2. The current diagnostic measures (i.e., clinical examina-
tion, radiography, ultrasonography, and magnetic resonance im-
aging) are unable to detect initial cartilage damage3,4. Early
cartilage damage may be detected during an arthroscopic proced-
ure, e.g., when treating meniscal or ligamental tears5. The state-of-
the-art in the arthroscopic evaluation of cartilage integrity, how-
ever, is far from optimal. The current gold-standard relies on visual
inspection and manual probing of the tissue6; both of which are
highly subjective and poorly repeatable7. Therefore, objective and
reliable measures are required to improve the quality of cartilage
diagnostics8.

To date, several intra-articular diagnostic techniques have been
suggested to replace or augment traditional arthroscopic evalua-
tion9,10. Two promising optical methods, optical coherence to-
mography (OCT) and near-infrared spectroscopy (NIRS)9,10, utilize
non-ionizing NIR light to evaluate cartilage integrity non-destruc-
tively. NIRS is a widely applied vibrational spectroscopic technique
that measures NIR absorbance in biological tissues, i.e., an optical
quantity that provides an indicative measure of the tissue's bio-
molecular composition. In comparison to other spectral regions,
such as the mid-infrared region used in Fourier transform infrared
spectroscopy, NIR light penetrates deeper into biological tissues
(~5 mm) and has less stringent requirements for sample prepara-
tion, making it an attractive option for whole tissue
characterization11.

Adaptation of NIRS, however, requires an extensive library of
spectral measurements and target properties values (i.e., calibra-
tion data) prior to application. In joint diagnostics, common target
properties include compositional, structural, and functional prop-
erties of cartilage, together describing the overall integrity of the
tissue. This calibration data can be used to construct a statistical
model for predicting the target properties of independent samples
from their NIRS measurements. The gold-standard statistical
approach in chemometric applications, such as NIRS evaluation of
wheat quality12 and soil13, is partial least squares regression (PLSR),
Fig. 1

Arthroscopic photos of induced blunt (a, left joint) and sh
surface of the intermediate carpal bone from different pon
along with a photo captured during the arthroscopic in vi

using an arthroscope for navigation (c).
which has also been utilized to predict cartilage properties14.
Recently, machine learning techniques, such as convolutional
neural networks (CNNs), have been suggested as a replacement for
conventional regression techniques, such as principal component
regression (PCR) and PLSR, due to their superior performance15.
While CNN has been extensively used in image analysis, such as
object classification, its applications in spectroscopy, especially
joint diagnostics, are still sparse16e18. Most recent studies have
demonstrated the potential of NIRS for ex vivo arthroscopic evalu-
ation of equine and human joint tissues by adapting CNN and PC
analysis (PCA), respectively. However, no previous study has
demonstrated prediction of cartilage properties from NIR spectra
acquired in vivo, or utilized the technique in follow-up
monitoring10,17,19.

We hypothesize that NIRS combined with machine learning can
be utilized for in vivo longitudinal monitoring of changes in carti-
lage properties (i.e., cartilage thickness and biomechanical prop-
erties) during injury progression. The hypothesis is tested by
monitoring the progression of different cartilage groove-injury
models in the carpal joints of Shetland ponies.
Materials and methods

Blunt and sharp grooves were inflicted via arthrotomy by a
European board-certified equine surgeon (dipl. ECVS) on the dor-
soproximal surface of the intermediate carpal bone (radiocarpal
joint) and at the radial facet of the third carpal bone (intercarpal
joint) of a randomized (left or right) front leg of Shetland ponies
(female, N ¼ 9, age ¼ 6.8 ± 2.6 years) as previously described
(Fig. 1)20. The number of ponies was determined with a power
analysis (power 0.90 and P < 0.05) based on the results of a pilot
study21 and previous studies22e24. None of the ponies showed
lameness preoperatively. For each pony, the sham-operated
contralateral joint was used as a control. NIRS measurements were
performed on the grooved cartilage surfaces during the initial
arp (b, right joint) grooves at the dorsoproximal
ies, and the respective measurement locations,
vo spectral acquisition with a NIRS probe while
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surgery (baseline, 0 weeks) and arthroscopically at the three
follow-up time points (11, 23, and 39 weeks, Fig. 1(c)), whereas the
control joints were onlymeasured at baseline and 39weeks to limit
the time of anaesthesia (due to high risk) and as no changes were
expected on their cartilage properties. After 39 weeks, the ponies
were humanely euthanized, and the joints were stored at�20�C for
further analysis. The study was authorized by the Utrecht Univer-
sity Animal Experiments Committee (AVD108002015307, Utrecht,
The Netherlands) in compliance with the Dutch Act on Animal
Experimentation.

In vivo arthroscopic measurements

During the arthroscopic procedure, a conventional arthroscope
(4 mm, 30� inclination, Synergy HD3 system, Arthrex, Naples, FL,
USA) was used for navigating and aligning the NIRS probe
perpendicular to the cartilage surface [Fig. 1(c)] using standard
portals as described by McIlwraith et al.25 at follow-ups. Baseline
measurements (0 weeks) were performed during the arthrotomy.
Ringer's solution (Fresenius, Bad Homburg v.d.H., Germany) con-
taining sodium chloride (8.6 g/l), potassium chloride (0.3 g/l), and
calcium chloride (0.33 g/l) was used for joint distension. In vivo NIR
Fig. 2

A 3D rendering of micro-computed tomography images
location indicated with a dotted line in Fig. 2(a)) from the sa
ex vivo spectra, including standard deviation (grey), with a
cartilage thickness (Th) and instantaneous modulus (IM) va
subfigures on several spectral regions (IeV).
spectra were acquired with instrumentation, including two spec-
trometers and a light source (AvaSpec-ULS2048L, l ¼ 0.4e1.1 mm,
resolution ¼ 0.58 nm, AvaSpec-NIR256-2.5-HSC, l ¼ 1.0e2.5 mm,
resolution ¼ 6.4 nm, and AvaLight-HAL-(S)-Mini, l ¼ 0.36e2.5 mm,
Avantes BV, Apeldoorn, The Netherlands), and a custom arthro-
scopic fibre optic probe (Avantes BV)10. NIRS measurements were
conducted at 12 locations, on and adjacent to grooves, in each joint
(Fig. 1). At each location, 15 spectra (each spectrum consists of ten
coadded scans) were recorded with a total acquisition time of 2.7 s.
The total number of in vivo spectra from baseline to the final follow-
up time point were 5017, 2951, 2917, and 5404, respectively, after
exclusion of measurements with instrumentation-related errors.
Several locations could not always be assessed due to anatomical
constraints.

Ex vivo cartilage thickness, NIRS, and biomechanical measurements

After extraction of osteochondral samples, cartilage thickness
was determined from micro-computed tomography images
(Fig. 2(a)e(b), 90 kV tube voltage, 40 � 40 � 40 mm3 voxel size,
Quantum FX, Perkin Elmer, Waltham, MA, USA) by using a custom-
made Matlab-function (R2018b, Mathworks, Natick, MA) for
(a) and a cross-sectional image (b, acquisition
me sample as presented in Fig. 1(a). The average
division to 4 groups based on lower or higher

lues compared to their median (c) with additional
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locations adjacent to grooves (i.e., locations 1, 3, 5, 6, 8, and 10,
Fig. 1(a)), locations of the control joints, and locations of kissing
sites (i.e., the opposing cartilage surfaces in contact with the
grooved sites). The measured cartilage thickness was required to
customize the biomechanical testing protocol for each measure-
ment location.

NIR spectra (n ¼ 5456) were also acquired ex vivo from the
osteochondral samples [Fig. 2(c)] with acquisition settings and
system identical to those used during in vivo arthroscopy. Ex vivo
measurements were performed at room temperature with the
sample submerged in a phosphate-buffered saline bath. Addition-
ally, six locations of each joint were measured at the kissing site.

A commercial mechanical tester (Mach-1 v500css, Bio-
momentum Inc., Laval, Quebec, Canada) was used to determine the
instantaneous modulus (IM) for locations adjacent to defects semi-
automatically using a spherical indenter of 0.5 mm in diameter as
described previously20. Briefly, the mechanical protocol consisted
of a preload of 0.1 N, followed by a single 15% strain indentation
step (velocity ¼ 100% strain/s). The IM was determined from the
peak stress/strain ratio according to Hayes et al. by assuming a
Poisson's ratio of 0.526. No change in cartilage biomechanical
properties was expected to occur due to the freezeethaw cycles27.

Outlier detection and data preparation

The relationship between NIR spectra and cartilage reference
properties (i.e., cartilage thickness and IM) was investigated using
CNNs. First, data from the spectral regions 0.4e0.8 mm (light from
the conventional arthroscope), 1.4e1.6 mm (water saturation), and
1.85e2.5 mm (water saturation) were excluded and, thus, the
analysis was limited to data in the spectral regions 0.8e1.4 mm and
1.6e1.85 mm10,17. Although the spectral region of 2.0e2.5 mm has
been previously attributed to cartilage components28, utilization of
this region would have required additional coaddition of spectra to
achieve high enough signal-to-noise ratio, thereby resulting in an
unreasonably long acquisition time for in vivo measurements. The
spectra were first smoothed and scatter-corrected using standard
normal variate (SNV). In addition, first and second-order derivative
Fig. 3
Pre-processed 2nd-derivative ex vivo spectra from the sp
sponding principal component (PC) scores with the 3D-v
outliers.
pre-processing were computed. Pre-processing was performed
using 3rd-degree SavitzkyeGolay algorithm with window sizes of
149 (86 nm) and 23 (148 nm) for the different spectrometer
outputs.

While CNNs have reasonable tolerance against noisy data,
removing bad NIR spectra from the calibration dataset (i.e., outlier
rejection) can greatly improve the prediction accuracy. Outlier
detection was performed by calculating the first three principal
scores of the pre-processed ex vivo spectra with PCA and plotting
them in a 3D-space (Fig. 3)29. Unlike during in vivo NIRS mea-
surements, contact between the probe and cartilage surface could
be ensured during the ex vivo acquisition. Based on the scatter plot,
abnormal spectra that were separated from the main group were
manually rejected. The main group was enclosed in a volume by
adopting Delaunay triangulation. The spectra acquired in vivowere
then projected to the same PCA space and the spectra with their
response outside the volume were deemed outliers. Outlier
detection was performed separately for the three spectral regions,
and outlier detection in any of the spectral regions resulted in the
exclusion of the whole spectrum.

Prior to machine learning analysis, the ex vivo spectra were
standardized (i.e., rescaling each spectral variable to a mean of
0 and standard deviation of 1) using the StandardScaler class of the
sklearn package in Python to account for the different order of
magnitude in the pre-processed spectra. This scaling was then
applied to the in vivo spectra. Due to the skewed distribution of the
target properties, logarithm and square root transformations were
applied to cartilage thickness and IM, respectively, during CNN
training. This was followed by normalization between 0 and 1 using
the MinMaxScaler class of the sklearn package. These steps have
been shown to improve the performance and training stability of
CNNs30,31.

Machine learning

Neural networks have an input layer (data input), hidden layers
(data representation), and an output layer (prediction). Each hid-
den layer consists of several neurons that include an activation
ectral region of 0.8e1.0 mm (a) and their corre-
olume (b). The red lines and points present the Osteoarthritis
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Model Timepoints Treatment groups Fixed factors Interactions Random
effect

Model
1

Baseline, 39 weeks Control blunt, Blunt-grooved, Control sharp,
Sharp -grooved

Treatment group, time point, joint,
location*

Treatment group, time
point, joint

Pony

Model
2

Baseline, 11 weeks, 23 weeks,
39 weeks

Blunt-grooved, Sharp-grooved Treatment group, time point, joint,
location

Treatment group, time
point, joint

Pony

Table I

Specifications of statistical models. Time point was used as a categorical value. Joint was defined as
radiocarpal or intercarpal and location as dorsal or palmar of the central groove. *For analysis of
cartilage thickness at the grooved locations (i.e., locations 2, 4, 7, 9, 11, and 12), the location was
excluded as a fixed factor as it had no significant effect and AIC improved without this factor

Osteoarthritis
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function, such as rectified linear unit (ReLU) and swish32,33, and a
set of weights and biases that are optimized through training with a
large set of calibration data. A challenge with conventional multi-
variate regression techniques, as well as machine learning
methods, is that they are prone to overfitting, i.e., a model performs
well on the calibration data but poorly on new data. Generally, data
splitting into independent subgroups can minimize this limitation.
With CNNs, the ability of the network to generalise well to new
data can be further ensured by regularization techniques (i.e., Lasso
and Ridge regression) and batch normalization34.

In this study, the data from a spectral region of 0.8e1.0 mm and a
concatenation of 1.05e1.4 and 1.6e1.85 mm regions were fed into
the network separately (i.e., branches 1 and 2, respectively) due to
the resolution difference of the spectrometers (Supp. Fig. 1)35. As a
Fig. 4

Boxplots of grooved (white) and control (grey) cartilage with
outliers (red crosses) for cartilage thickness predicted from
different time points. Locations measured adjacent to the
joints are presented separately. Significant differences (P <
based on Model 1 (bold) and Model 2. The number of lo
locations with successful measurements at all four (groov
result, the resolution difference could be accounted for by sepa-
rately tuning the widths of the convolutional filters. The network
included the two branches, each having three subsequent combi-
nations of a 1D-convolution layer (filters ¼ 128) with swish acti-
vation and L2-regularization (i.e., Ridge regression)33, a batch
normalisation layer34, and a max pooling layer (pool ¼ 2,
strides ¼ 2). The outputs of the third max pooling layers were
flattened, concatenated, and input to a fully connected dense layer
(neurons ¼ 128) with rectified linear unit (ReLU) activation and L2-
regularization32. This was followed by a dropout layer (¼0.50) and a
linear dense layer. For branches 1 and 2, the initial kernel sizes of
convolutional layers were 40 and 10, respectively, with the kernel
size halved at each layer. Glorot uniform (kernel) and zero (bias)
weight initialization were used at each layer. To minimize the
median (red line), quartiles (25% and 75%), and
in vivo spectra of the independent test set at
grooves for radiocarpal (a) and intercarpal (b)
0.01, Table I) are presented with their P-values
cations (N) is presented above each bar. Only
ed) or two (control) time points were included.
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Fig. 5

Boxplots of grooved (white) and control (grey) cartilage with median (red line), quartiles (25% and 75%), and
outliers (red crosses) for instantaneous modulus predicted from in vivo spectra of the independent test set
with instantaneous modulus at different time points. Locations measured adjacent to grooves for radio-
carpal (a) and intercarpal (b) joints are presented separately. Significant differences (P < 0.01, Table I) are
presented with their P-values based on Model 1 (bold) and Model 2. The number of locations (N) is pre-
sented above each bar. Only locations with successful measurements at all four (grooved) or two (control)
time points were included.
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chance of overfitting, callbacks and EarlyStopping were applied to
reduce the learning rate, if the mean squared error (MSE) of the
validation group did not decrease for 30 epochs, and to halt
training, if no decrease in error was observed for 60 epochs,
respectively. Network training was performed using the Adam
optimizer in Keras.

The networks were optimized using 4-fold cross-validationwith
8 ponies and further evaluated with the data from the remaining
pony (i.e., independent test set). This process was repeated 9 times
with each pony used once as the independent test set. The spectra
acquired ex vivo and arthroscopically at 39 weeks were included in
the network training to account for possible differences between in
vivo and ex vivo measurements.
Statistics

Network performance was evaluated by comparing the
measured and predicted reference values using the non-parametric
Spearman's rank correlation (due to non-normal distribution of
reference parameters), and by estimating the root mean square
error (RMSE) of calibration, validation, and independent test
groups. In addition, normalized RMSE (NRMSE, i.e., RMSE divided
by the range of the reference variable) was also calculated. The final
network architecture was selected based on the average perfor-
mance (i.e., smallest RMSE) of the validation group. For prediction
and visualization of temporal trends of cartilage reference proper-
ties (Figs. 4 and 5), only the independent predictions were used. For
statistical analysis, RStudio (version 1.1.463) was used. Statistical
differences in cartilage thickness and IM between time points and
treatment groups were investigated using two linear mixed effect
models with ‘pony’ as the random effect (nlme package, version
3.1e13736), followed by pair-wise comparisons of estimated means
with false discovery rate correction (Table I). Using this approach,
dependencies within animals were considered. Both cartilage
thickness and IM data were normalized using logarithmic trans-
formation. Model estimates were based on restricted maximum
likelihood estimators. The limit of statistical significance was set to
P < 0.01 as a more conservative limit was considered necessary
based on 95% confidence intervals.
Results

In qualitative evaluations, the average ex vivo spectra, divided
based on median reference values, revealed spectral data in the
regions of 0.84e0.88 mm and 0.9e0.94 mm to be more indicative of
IM, whereas differences in cartilage thickness were better observed
in the region of 1.18e1.66 mm (Fig. 2).

In total, 0.82% of the ex vivo spectra (n ¼ 45) were rejected as
outliers. From the in vivo spectral measurements: 23.0% of spectra
at baseline, 15.6% of spectra at 11 weeks, 4.5% of spectra at 23
weeks, and 11.0% of spectra at 39weeks were rejected by the outlier
detection algorithm. Outliers were more common in the spectral
region of 0.8e1.0 mm (n¼ 1600) compared to the spectral regions of
1.05e1.4 mm (n ¼ 470) and 1.6e1.85 mm (n ¼ 520). Investigation of
the raw outlying spectra revealed higher absorbances in all three
regions (0.02 AU, 0.08 AU, and 0.05 AU, respectively). In addition,
frequency-domain analysis of the rejected spectra revealed more
high-frequency components than in the accepted spectra.

Spectral data pre-processed with second derivative resulted in
the best performing CNNs. In general, more accurate predictions
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were obtained with cartilage thickness than IM (Table II), arguably
due to the light pathlength effect37. Thus, to account for this effect,
cartilage thickness was added as an additional input parameter
when training the networks for estimation of IM. This improved the
networks' prediction accuracy (Table II e IM 2).

Prediction of temporal variation in the target properties
revealed similar findings at and adjacent to the grooves; thus, only
predictions adjacent to the grooves are presented here (Figs. 4e5,
Table III). Predictions at the grooves are included in the supple-
mentary material (Supp. Figs. 2 and 3, Supp. Table I). The minimum
effect sizes, determined with a power of 0.90 and a P-value of 0.01,
for cartilage thickness and IM were 22.2 mm (average 41.4 mm) and
0.65 MPa (average 0.78 MPa), respectively. At 11 weeks, cartilage
thickness had significantly increased in both blunt and sharp
grooves in the radiocarpal joint and remained significantly higher
throughout the experiment (Fig. 4(a), Suppl. Fig. 2(a)). In the
intercarpal joint, the only significant difference in cartilage thick-
ness was observed in sharp grooves, showing a decrease from 11
weeks to 39 weeks (Fig. 4(b), Suppl. Fig. 2(b)). In the radiocarpal
joint, IM was significantly lower at 23 and 39 weeks when
compared to the baseline in both groove types (Fig. 5(a),
Suppl. Fig. 3(a)), whereas, in the intercarpal joint, a significant in-
crease (from baseline to 11 weeks) and decrease (from 11 weeks to
39 weeks) were only observed with sharp grooves (Fig. 5(b),
Suppl. Fig. 3(b)).

Discussion

In this study, NIRS was utilized for in vivo monitoring of longi-
tudinal changes in cartilage thickness and IM after the infliction of
sharp and blunt grooves. As hypothesized, machine learning, based
on CNNs, was able to predict cartilage properties from its NIR
spectra (Table II), as well as to estimate these properties at earlier
follow-up time points (Figs. 4 and 5, Suppl. Figs 2-3). To our
knowledge, no study has quantitatively evaluated cartilage prop-
erties at sequential in vivo time points after traumatic injury. Pre-
vious studies have merely focused on post-mortem analysis22,38,39.
Therefore, arthroscopic NIRS represents great potential for in vivo
evaluation of cartilage integrity, as well as for in vivo studies
focusing on regenerative medicine, which would benefit from
quantitative longitudinal monitoring to better identify promising
treatments.

Cartilage damage is often initiated by mechanical wear or
traumatic injuries to the joint, eventually leading to irreversible
loss of cartilage and deterioration of mechanical performance40. In
Parameter Mean 95% CI Range

Thickness (mm) 0.507 0.489e0.526 0.22e0

Instantaneous modulus (MPa) 7.08 6.69e7.48 1.29e1

Instantaneous modulus 2

e e e

Table II Cartilage reference properties and statistics of networ
cartilage thickness was included as an additional predic
this study, the cartilage groove injuries compromised the integrity
of the cartilagemacromolecular framework (i.e., collagen), arguably
leading to a decrease in the aggregation of proteoglycans, aggrecan
concentration, and the length of glycosaminoglycan chains and,
thus, increased matrix water content40. The initial swelling of the
cartilage matrix was likely due to increased water content, which
was observed between baseline and 11 weeks in the radiocarpal
joint (Fig. 4(a), Suppl. Fig. 2(a)). After 11 weeks, cartilage thickness
of blunt grooves presented a more downwards trend compared to
sharp grooves. We believe that the initial cartilage loss in the blunt
grooves resulted in decreased fluid pressurization and increases
tissue strains around the grooves41,42, leading to additional collagen
damage and compromised function. The IM, which is mainly
regulated by the collagen network and fluid pressurization43, did
not change during the first 11 weeks in the radiocarpal joint.
However, at the later time points, a systematic decrease in the IM
was observed, presumably as a result of progressive collagen
damage. This observation is supported by Mastbergen et al.22 and
Marijnissen et al.38 who demonstrated progressive collagen dam-
age in ovine fetlock joints at 15 and 37 weeks, and in canine knee
joints at 20 and 40 weeks with groove model, respectively.

Estimation of native cartilage thickness with NIRS has previ-
ously been demonstrated by Afara et al.37,44, McGoverin et al.45,
Prakash et al.19, and Sarin et al.14,17. However, specimens, spectral
regions, number of samples, and statistical methods vary sub-
stantially between the studies. Both McGoverin et al. and Prakash
et al. reported similar validation accuracy for in vitro measure-
ments of human tissue with R2 ¼ 64% and NRMSE ¼ 15.3%, and
r ¼ 0.83 and NRMSE ¼ 14%, respectively, at spectral regions
comparable to this study18,39. In addition, Prakash et al.19 reported
the performance (r ¼ 0.52 and NRMSE ¼ 25%) of the independent
arthroscopic ex vivo test group. While the validation performance
in this study was slightly weaker (r ¼ 0.52, NRMSE ¼ 21.5%), the
performance of the independent test group was similar to the
values reported by Prakash et al.19 The difference is most likely
caused by the variance in the cartilage conditions between the
studies, i.e., in this study, the reference measurements were only
available for visually healthy cartilage (i.e., not from groove lo-
cations), whereas varying degrees of cartilage degeneration were
reported by both McGoverin et al. and Prakash et al.with modified
Mankin scores between 2 and 12 and ICRS grades between 0 and
4, respectively46,47. The results of the current study are also in line
with our earlier study17, where slightly lower errors
(NRMSE ¼ 17.2%) were achieved for in vitro estimation of equine
cartilage thickness.
Statistics Calibration Validation Test

.93 Spearman 0.740 0.524 0.473
RMSE 0.124 0.153 0.155
NRMSE 17.5% 21.5% 21.8%

5.16 Spearman 0.768 0.432 0.332
RMSE 2.07 2.65 2.76
NRMSE 14.9% 19.1% 19.9%
Spearman 0.784 0.594 0.498
RMSE 1.94 2.43 2.43

NRMSE 14.0% 17.5% 17.5%

k performance. For instantaneous modulus 2,
tor to the CNN
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0 weeks 11 weeks 23 weeks 39 weeks

Exp. Control Exp. Exp. Exp. Control

Cartilage thickness
(mm)

Radiocarpal Blunt (Fig. 4a) 471 (448, 494);
471 (446, 497)

482 (459, 506) 533 (504, 564) 532 (503, 562) 502 (478, 527);
503 (476, 532)

506 (482, 531)

Sharp (Fig. 4a) 495 (474, 517);
495 (471, 520)

483 (463, 505) 536 (510, 563) 551 (525, 579) 542 (519, 566);
542 (516, 569)

503 (481,525)

Intercarpal Blunt (Fig. 4b) 469 (449, 490);
469 (447, 493)

472 (452, 493) 472 (449, 496) 478 (455, 502) 465 (446, 486);
465 (443, 489)

463 (443, 484)

Sharp (Fig. 4b) 456 (435, 479);
456 (432, 482)

449 (427, 471) 482 (456, 509) 471 (446, 498) 448 (427, 471);
449 (425, 474)

430 (409, 451)

Instantaneous
modulus (MPa)

Radiocarpal Blunt (Fig. 5a) 7.58 (6.91, 8.32);
7.58 (6.87, 8.37)

6.81 (6.21, 7.48) 7.08 (6.40, 7.84) 6.54 (5.92, 7.23) 6.83 (6.21, 7.50);
6.84 (6.19, 7.56)

6.58 (6.00, 7.22)

Sharp (Fig. 5a) 7.06 (6.50, 7.67);
7.06 (6.46, 7.71)

7.12 (6.55, 7.73) 6.70 (6.13, 7.32) 6.34 (5.81, 6.93) 6.30 (5.80, 6.85);
6.30 (5.77, 6.88)

6.86 (6.23, 7.46)

Intercarpal Blunt (Fig. 5b) 6.77 (6.23, 7.36);
6.77 (6.19, 7.39)

6.92 (6.36, 7.52) 6.82 (6.24, 7.45) 7.03 (6.44, 7.68) 6.65 (6.12, 7.23);
6.65 (6.09, 7.26)

6.85 (6.30, 7.44)

Sharp (Fig. 5b) 6.86 (6.26, 7.53);
6.86 (6.22, 7.57)

7.29 (6.64, 8.01) 7.81 (7.08, 8.62) 6.79 (6.16, 7.49) 7.03 (6.41, 7.72);
7.04 (6.38, 7.77)

7.23 (6.59, 7.93)

Table III
The estimated mean (95% confidence intervals) for cartilage thickness and instantaneous modulus per
treatment group, joint and time point derived from Model 1 (bold) and Model 2 for locations adjacent to
defects

Osteoarthritis
andCartilage

J.K. Sarin et al. / Osteoarthritis and Cartilage 29 (2021) 423e432430
The relationship between IM and NIR spectra has previously
been presented in only two studies14,19. The in vitro study by Sarin
et al. involving equines used a narrower spectral region of
0.73e0.95 mm and reported poor calibration accuracy (R2 ¼ 41.8%,
RMSE ¼ 3.01 MPa) compared to this study (r ¼ 0.784,
RMSE ¼ 1.94 MPa). The aforementioned spectral region has higher
penetration depth into cartilage compared to wavelengths above
1.0 mm and, thus, the data has included some contributions of
subchondral bone11. Prakash et al. used a spectral region of
0.7e1.85 mm with cadavers and reported a high correlation in in-
dependent testing (r ¼ 0.84) and a similar error (NRMSE ¼ 19%)
compared to this study (r ¼ 0.498, NRMSE ¼ 17.5%). The difference
in correlations is most probably due to varying degrees of cartilage
degeneration in the study of Prakash et al. as described earlier. Also,
compared to equine, human cartilage is thicker48; as a result, the
spectra is less influenced by the underlying subchondral bone. In
future studies, the utilization of spectral region of 2.0e2.5 mm could
be useful for the prediction of the IM due to its attribution to
cartilage collagen28,45; albeit, only with hardware-related optimi-
zation needed to achieve high enough SNR.

The main limitation of the present study is that cartilage refer-
ence parameters could only be measured at the end of the study
and not at the follow-up time points. Currently, cartilage thickness
cannot be reliably estimated with routine arthroscopic tools. Like-
wise, arthroscopic evaluation of cartilage biomechanical compe-
tence is challenging, as the only clinically available method is the
highly subjective manual probing of the tissue8. Another limitation
was the narrow joint cavities of radio- and intercarpal joints in
Shetland ponies, resulting in a relatively high number of outliers
due to poor contact between the NIRS probe and the cartilage
surface. Spectra measured with poor contact were, however, suc-
cessfully identified and removed by the outlier detection analysis.
Furthermore, the relatively higher number of in vivo spectral out-
liers at baseline (arthrotomy) and the first follow-up (arthroscopy)
demonstrated that the reliability of arthroscopic NIRS was
improved by optimizing the incision location when dealing with
narrow joint spaces. In addition, due to limitations imposed by the
biomechanical testing system and the great number of
biomechanical measurements required, dynamic and equilibrium
moduli were not determined.

In conclusion, arthroscopic NIRS combined with machine
learning enabled in vivo monitoring of cartilage properties in the
equine carpal joint. Therefore, this technique has great potential for
in vivo evaluation of cartilage integrity, as well as for in vivo follow-
up of new regenerative therapies. In future studies, the trained CNN
can be directly applied in situ during similar interventions. Addi-
tionally, this work provided valuable information on the clinical
application of arthroscopic NIRS, laying the foundation for in vivo
application during arthroscopies of human joints.

Author contributions

Conception and design of the study: Sarin, JK.; te Moller, NCR.;
van Weeren, PR.; Korhonen, RK; T€oyr€as, J. Acquisition of the data:
Sarin, JK.; te Moller, NCR.; Mohammadi, A.; Prakash, M.; Brommer,
H.; Nippolainen, E.; Shaikh, R.; Analysis and interpretation of
data: Sarin, JK.; te Moller, NCR.; Mohammadi, A.; Torniainen, J.;
M€akel€a, JTA.; Korhonen, RK.; Afara, IO., T€oyr€as, J.

All authors contributed to the drafting or revising the article,
and approved the final submitted version.

Conflict of interest
None declared.

Acknowledgements

The Doctoral Programme in Science, Technology and Computing
(SCITECO) of University of Eastern Finland, Kuopio University
Hospital (VTR Projects 5041750 and 5041744, PY210 Clinical
Neurophysiology), the Academy of Finland (Projects 267551,
315820, 316258, and 324529), the Orion Research Foundation sr,
the Finnish Foundation of Technology Promotion, The MIRACLE
Project-Horizon 2020 Research and Innovation Programme-
H2020-ICT-2017-1 (grant agreement No. 780598), and the NWO
Graduate Programme Grant (022.005.018) financially supported
this study.



J.K. Sarin et al. / Osteoarthritis and Cartilage 29 (2021) 423e432 431
Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.joca.2020.12.007.
References

1. Favero M, Ramonda R, Goldring MB, Goldring SR, Punzi L. Early
knee osteoarthritis: 1. RMD Open 2015;1(Suppl 1), e000062,
https://doi.org/10.1136/rmdopen-2015-000062.

2. Stiebel M, Miller LE, Block JE. Post-traumatic knee osteoar-
thritis in the young patient: therapeutic dilemmas and
emerging technologies. Open Access J Sports Med 2014;5:
73e9, https://doi.org/10.2147/OAJSM.S61865.

3. von Engelhardt LV, Lahner M, Klussmann A, Bouillon B,
D�avid A, Haage P, et al. Arthroscopy vs. MRI for a detailed
assessment of cartilage disease in osteoarthritis: diagnostic
value of MRI in clinical practice. BMC Muscoskel Disord
2010;11(1):75, https://doi.org/10.1186/1471-2474-11-75.

4. Friemert B, Oberl€ander Y, Schwarz W, H€aberle HJ, B€ahren W,
Gerngross H, et al. Diagnosis of chondral lesions of the knee
joint: can MRI replace arthroscopy? A prospective study. Knee
Surg Sports Traumatol Arthrosc 2004;12(1):58e64, https://
doi.org/10.1007/s00167-003-0393-4.

5. Orlando Júnior N, de Souza Le~ao MG, de Oliveira NHC. Diag-
nosis of knee injuries: comparison of the physical examination
and magnetic resonance imaging with the findings from
arthroscopy. Rev Bras Ortop (English Ed.) 2015;50(6):712e9,
https://doi.org/10.1016/j.rboe.2015.10.007.

6. Spahn G, Klinger HM, Hofmann GO, Gunter Spahn, Klinger HM,
Hofmann Gunther O. How valid is the arthroscopic diagnosis
of cartilage lesions? Results of an opinion survey among highly
experienced arthroscopic surgeons. Arch Orthop Trauma Surg
2009;129(8):1117e21, https://doi.org/10.1007/s00402-009-
0868-y.

7. Spahn G, Klinger HM, Baums M, Pinkepank U, Hofmann GO.
Reliability in arthroscopic grading of cartilage lesions: results
of a prospective blinded study for evaluation of inter-observer
reliability. Arch Orthop Trauma Surg 2011;131(3):377e81,
https://doi.org/10.1007/s00402-011-1259-8.

8. Spahn G, Klinger HM, Hofmann GO. How valid is the arthro-
scopic diagnosis of cartilage lesions? Results of an opinion
survey among highly experienced arthroscopic surgeons. Arch
Orthop Trauma Surg 2009;129(8):1117e21, https://doi.org/
10.1007/s00402-009-0868-y.

9. Li X, Martin S, Pitris C, Ghanta R, Stamper DL, Harman M, et al.
High-resolution optical coherence tomographic imaging of
osteoarthritic cartilage during open knee surgery. Arthritis Res
Ther 2005;7(2):318e23, https://doi.org/10.1186/ar1491.

10. Sarin JK, te Moller NCR, Mancini IAD, Brommer H, Visser J,
Malda J, et al. Arthroscopic near infrared spectroscopy enables
simultaneous quantitative evaluation of articular cartilage and
subchondral bone in vivo. Sci Rep 2018;8(1):13409, https://
doi.org/10.1038/s41598-018-31670-5.

11. Padalkar MV, Pleshko N. Wavelength-dependent penetration
depth of near infrared radiation into cartilage. Analyst
2015;140(7):2093e100, https://doi.org/10.1039/c4an01987c.

12. Mutlu AC, Boyaci IH, Genis HE, Ozturk R, Basaran-Akgul N,
Sanal T, et al. Prediction of wheat quality parameters using
near-infrared spectroscopy and artificial neural networks. Eur
Food Res Tech 2011;233(2):267e74, https://doi.org/10.1007/
s00217-011-1515-8.

13. Goldshleger N, Chudnovsky A, Ben-Dor E. Using reflectance
spectroscopy and artificial neural network to assess water
infiltration rate into the soil profile. Appl Environ Soil Sci
2012;2012:1e9, https://doi.org/10.1155/2012/439567.

14. Sarin JK, Amissah M, Brommer H, Argüelles D, T€oyr€as J,
Afara IO. Near infrared spectroscopic mapping of functional
properties of equine articular cartilage. Ann Biomed Eng
2016;44(11):3335e45, https://doi.org/10.1007/s10439-016-
1659-6.

15. Cui C, Fearn T. Modern practical convolutional neural net-
works for multivariate regression: applications to NIR cali-
bration. Chemometr Intell Lab Syst 2018;182:9e20, https://
doi.org/10.1016/j.chemolab.2018.07.008.

16. Acquarelli J, van Laarhoven T, Gerretzen J, Tran TN,
Buydens LMC, Marchiori E. Convolutional neural networks for
vibrational spectroscopic data analysis. Anal Chim Acta
2017;954:22e31, https://doi.org/10.1016/j.aca.2016.12.010.

17. Sarin JK, Nyk€anen O, Tiitu V, Mancini IAD, Brommer H, Visser J,
et al. Arthroscopic determination of cartilage proteoglycan
content and collagen network structure with near-infrared
spectroscopy. Ann Biomed Eng 2019;47(8):1815e26, https://
doi.org/10.1007/s10439-019-02280-7.

18. Afara IO, Sarin JK, Ojanen S, Finnil€a MAJ, Herzog W,
Saarakkala S, et al. Machine learning classification of
articular cartilage integrity using near infrared spectros-
copy. Cell Mol Bioeng 2020:1, https://doi.org/10.1007/
s12195-020-00612-5.

19. Prakash M, Joukainen A, Torniainen J, Honkanen MKM,
Rieppo L, Afara IO, et al. Near-infrared spectroscopy enables
quantitative evaluation of human cartilage biomechanical
properties during arthroscopy. Osteoarthritis Cartilage
2019;27(8):1235e43, https://doi.org/10.1016/
j.joca.2019.04.008.

20. te Moller NCR, Mohammadi A, Plomp S, Bragança FMS,
Beukers M, Pouran B, et al. Structural, compositional, and
functional effects of blunt and sharp cartilage damage on the
joint: a 9-month equine groove model study. J Orthop Res
2020:1e13, https://doi.org/10.1002/jor.24971.

21. te Moller NCR. Development of an equine carpal groove model
to study early changes in osteoarthritis - a pilot study. Oste-
oarthritis Cartilage 2018;26(2018):S132e3, https://doi.org/
10.1016/j.joca.2018.02.288.

22. Mastbergen SC, Pollmeier M, Fischer L, Vianen ME,
Lafeber FPJG. The groove model of osteoarthritis applied to the
ovine fetlock joint. Osteoarthritis Cartilage 2008;16(8):
919e28, https://doi.org/10.1016/j.joca.2007.11.010.

23. de Visser HM, Weinans H, Coeleveld K, van Rijen MHP,
Lafeber FPJG, Mastbergen SC. Groove model of tibia-femoral
osteoarthritis in the rat. J Orthop Res 2017;35(3):496e505,
https://doi.org/10.1002/jor.23299.

24. Maninchedda U, Lepage OM, Gangl M, Hilairet S, Remandet B,
Meot F, et al. Development of an equine groove model to
induce metacarpophalangeal osteoarthritis: a pilot study on 6
horses. PLoS One 2015;10(2):1e18, https://doi.org/10.1371/
journal.pone.0115089.

25. McIlwraith CW, Nixon AJ, Wright IM. Diagnostic and Surgical
Arthroscopy in the Horse. 4th edn 2015:45e110.

26. Hayes WC, Keer LM, Herrmann G, Mockros LF. A mathematical
analysis for indentation tests of articular cartilage. J Biomech
1972;5(5):541e51, https://doi.org/10.1016/0021-9290(72)
90010-3.

27. Szarko M, Muldrew K, Bertram JE. Freeze-thaw treatment ef-
fects on the dynamic mechanical properties of articular carti-
lage. BMC Muscoskel Disord 2010;11(1):231, https://doi.org/
10.1186/1471-2474-11-231.

28. Palukuru UP, McGoverin CM, Pleshko N. Assessment of hyaline
cartilage matrix composition using near infrared spectroscopy.

https://doi.org/10.1016/j.joca.2020.12.007
https://doi.org/10.1136/rmdopen-2015-000062
https://doi.org/10.2147/OAJSM.S61865
https://doi.org/10.1186/1471-2474-11-75
https://doi.org/10.1007/s00167-003-0393-4
https://doi.org/10.1007/s00167-003-0393-4
https://doi.org/10.1016/j.rboe.2015.10.007
https://doi.org/10.1007/s00402-009-0868-y
https://doi.org/10.1007/s00402-009-0868-y
https://doi.org/10.1007/s00402-011-1259-8
https://doi.org/10.1007/s00402-009-0868-y
https://doi.org/10.1007/s00402-009-0868-y
https://doi.org/10.1186/ar1491
https://doi.org/10.1038/s41598-018-31670-5
https://doi.org/10.1038/s41598-018-31670-5
https://doi.org/10.1039/c4an01987c
https://doi.org/10.1007/s00217-011-1515-8
https://doi.org/10.1007/s00217-011-1515-8
https://doi.org/10.1155/2012/439567
https://doi.org/10.1007/s10439-016-1659-6
https://doi.org/10.1007/s10439-016-1659-6
https://doi.org/10.1016/j.chemolab.2018.07.008
https://doi.org/10.1016/j.chemolab.2018.07.008
https://doi.org/10.1016/j.aca.2016.12.010
https://doi.org/10.1007/s10439-019-02280-7
https://doi.org/10.1007/s10439-019-02280-7
https://doi.org/10.1007/s12195-020-00612-5
https://doi.org/10.1007/s12195-020-00612-5
https://doi.org/10.1016/j.joca.2019.04.008
https://doi.org/10.1016/j.joca.2019.04.008
https://doi.org/10.1002/jor.24971
https://doi.org/10.1016/j.joca.2018.02.288
https://doi.org/10.1016/j.joca.2018.02.288
https://doi.org/10.1016/j.joca.2007.11.010
https://doi.org/10.1002/jor.23299
https://doi.org/10.1371/journal.pone.0115089
https://doi.org/10.1371/journal.pone.0115089
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref25
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref25
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref25
https://doi.org/10.1016/0021-9290(72)90010-3
https://doi.org/10.1016/0021-9290(72)90010-3
https://doi.org/10.1186/1471-2474-11-231
https://doi.org/10.1186/1471-2474-11-231


J.K. Sarin et al. / Osteoarthritis and Cartilage 29 (2021) 423e432432
Matrix Biol 2014;38:3e11, https://doi.org/10.1016/
j.matbio.2014.07.007.

29. Burns DA, Ciurczak EW. Handbook of near-infrared analysis,
3rd ed. Anal Bioanal Chem 2009;393(5):1387e9.

30. Shanker MS, Hu MY, Hung MS. Effect of data standardization
on neural network training. Omega 1996;24(4):385e97,
https://doi.org/10.1016/0305-0483(96)00010-2.

31. Kim D. Normalization methods for input and output vectors in
Backpropagation neural networks. Int J Comput Math
1999;71(1e2):161e71, https://doi.org/10.1080/
00207169908804800.

32. Nair V, Hinton GE. Rectified linear units improve restricted
Boltzmann machines. In: Proceedings of the 27th International
Conference on Machine Learning (ICML). Association for
Computing Machinery; 2010:807e14. 10.1.1.165.6419.

33. Ramachandran P, Zoph B, Le QV. Searching for activation
functions 2017. Available at: http://arxiv.org/abs/1710.05941.
Accessed November 14, 2019.

34. Ioffe S, Szegedy C. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In: 32nd
Int Conf Mach Learn ICML 2015 2015;vol. 1:448e56.

35. LeNail A. NN-SVG: Publication-ready neural network archi-
tecture schematics. J Open Source Softw 2019;4(33):747,
https://doi.org/10.21105/joss.00747.

36. Pinheiro J, Bates D, DebRoy S, Sarkar D. Linear and nonlinear
mixed Effects models (nlme). Packag R Softw Stat Comput
CRAN Repos 2011. 0e21. Available at: https://cran.r-project.
org/package¼nlme. Accessed June 22, 2020.

37. Afara IO, Singh S, Oloyede A. Application of near infrared (NIR)
spectroscopy for determining the thickness of articular carti-
lage. Med Eng Phys 2013;35(1):88e95, https://doi.org/
10.1016/j.medengphy.2012.04.003.

38. Marijnissen ACA, Van Roermund PM, Verzijl N, Tekoppele JM,
Bijlsma JWJ, Lafeber FPJG. Steady progression of osteoarthritic
features in the canine groove model. Osteoarthritis Cartilage
2002;10(4):282e9, https://doi.org/10.1053/joca.2001.0507.

39. Afara IO, Prasadam I, Arabshahi Z, Xiao Y, Oloyede A. Moni-
toring osteoarthritis progression using near infrared (NIR)
spectroscopy. Sci Rep 2017;7(1):11463, https://doi.org/
10.1038/s41598-017-11844-3.
40. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration
and osteoarthritis, repair, regeneration, and transplantation.
Instr Course Lect 1998;47:487e504.

41. Ven€al€ainen MS, Mononen ME, Salo J, R€as€anen LP, Jurvelin JS,
T€oyr€as J, et al. Quantitative evaluation of the mechanical risks
caused by focal cartilage defects in the knee. Sci Rep
2016;6(1):37538, https://doi.org/10.1038/srep37538.

42. Dabiri Y, Li L. Focal cartilage defect compromises fluid-pres-
sure dependent load support in the knee joint. Int J Numer
Method Biomed Eng 2015;31(6), https://doi.org/10.1002/
cnm.2713.

43. Korhonen RK, Laasanen MS, T€oyr€as J, Lappalainen R,
Helminen HJ, Jurvelin JS. Fibril reinforced poroelastic model
predicts specifically mechanical behavior of normal, proteo-
glycan depleted and collagen degraded articular cartilage.
J Biomech 2003;36(9):1373e9, https://doi.org/10.1016/S0021-
9290(03)00069-1.

44. Afara IO, Hauta-Kasari M, Jurvelin JS, Oloyede A, T€oyr€as J.
Optical absorption spectra of human articular cartilage corre-
late with biomechanical properties, histological score and
biochemical composition. Physiol Meas 2015;36(9):1913e28,
https://doi.org/10.1088/0967-3334/36/9/1913.

45. McGoverin CM, Lewis K, Yang X, Bostrom MPG, Pleshko N. The
contribution of bone and cartilage to the near-infrared spec-
trum of osteochondral tissue. Appl Spectrosc 2014;68(10):
1168e75, https://doi.org/10.1366/13-07327.

46. Rutgers M, van Pelt MJP, Dhert WJA, Creemers LB, Saris DBF.
Evaluation of histological scoring systems for tissue-engi-
neered, repaired and osteoarthritic cartilage. Osteoarthritis
Cartilage 2010;18(1):12e23, https://doi.org/10.1016/
j.joca.2009.08.009.

47. Brittberg M, Winalski CS. Evaluation of cartilage injuries and
repair. J Bone Joint Surg Am 2003;(Suppl 2):58e69. 85-A
Suppl.

48. Malda J, de Grauw JC, Benders KEM, Kik MJL, van de Lest CHA,
Creemers LB, et al. Of mice, men and elephants: the relation
between articular cartilage thickness and body mass. Orgel
JPRO, ed. PLoS One 2013;8(2), e57683, https://doi.org/10.1371/
journal.pone.0057683.

https://doi.org/10.1016/j.matbio.2014.07.007
https://doi.org/10.1016/j.matbio.2014.07.007
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref29
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref29
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref29
https://doi.org/10.1016/0305-0483(96)00010-2
https://doi.org/10.1080/00207169908804800
https://doi.org/10.1080/00207169908804800
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref32
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref32
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref32
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref32
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref32
http://arxiv.org/abs/1710.05941
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref34
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref34
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref34
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref34
https://doi.org/10.21105/joss.00747
https://cran.r-project.org/package=nlme
https://cran.r-project.org/package=nlme
https://cran.r-project.org/package=nlme
https://doi.org/10.1016/j.medengphy.2012.04.003
https://doi.org/10.1016/j.medengphy.2012.04.003
https://doi.org/10.1053/joca.2001.0507
https://doi.org/10.1038/s41598-017-11844-3
https://doi.org/10.1038/s41598-017-11844-3
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref40
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref40
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref40
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref40
https://doi.org/10.1038/srep37538
https://doi.org/10.1002/cnm.2713
https://doi.org/10.1002/cnm.2713
https://doi.org/10.1016/S0021-9290(03)00069-1
https://doi.org/10.1016/S0021-9290(03)00069-1
https://doi.org/10.1088/0967-3334/36/9/1913
https://doi.org/10.1366/13-07327
https://doi.org/10.1016/j.joca.2009.08.009
https://doi.org/10.1016/j.joca.2009.08.009
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref47
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref47
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref47
http://refhub.elsevier.com/S1063-4584(20)31224-3/sref47
https://doi.org/10.1371/journal.pone.0057683
https://doi.org/10.1371/journal.pone.0057683

	Machine learning augmented near-infrared spectroscopy: In vivo follow-up of cartilage defects
	Introduction
	Materials and methods
	In vivo arthroscopic measurements
	Ex vivo cartilage thickness, NIRS, and biomechanical measurements
	Outlier detection and data preparation
	Machine learning
	Statistics

	Results
	Discussion
	Author contributions
	Conflict of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


