18 research outputs found

    Water incorporation in synthetic and natural MgAl2O4 spinel

    Get PDF
    The solubility and incorporation mechanisms of water in synthetic and natural MgAl2O4 spinel have been investigated in a series of high-pressure/temperature annealing experiments. In contrast to most other nominally anhydrous minerals, natural spinel appears to be completely anhydrous. On the other hand, non-stoichiometric Al-rich synthetic (defect) spinel can accommodate several hundred ppm water in the form of structurally-incorporated hydrogen. Infrared (IR) spectra of hydrated defect spinel contain one main O-H stretching band at 3343-3352 cm-1 and a doublet consisting of two distinct O-H bands at 3505-3517 cm-1 and 3557-3566 cm-1. IR spectra and structural refinements based on single-crystal X-ray data are consistent with hydrogen incorporation in defect spinel onto both octahedral and tetrahedral O-O edges. Fine structure of O-H bands in IR spectra can be explained by partial coupling of interstitial hydrogen with cation vacancies, or by the effects of Mg-Al disorder on the tetrahedral site. The concentration of cation vacancies in defect spinel is a major control on hydrogen affinity. The commercial availability of large single crystals of defect spinel coupled with high water solubility and similarities in water incorporation mechanisms between hydrous defect spinel and hydrous ringwoodite (Mg2SiO4) suggests that synthetic defect spinel may be a useful low-pressure analogue material for investigating the causes and consequences of water incorporation in the lower part of Earth's mantle transition zone

    Deep formation of Earth's earliest continental crust consistent with subduction

    Get PDF
    About four billion years ago, Earth’s outer layer is thought to have been composed mostly of a 25- to 50-km-thick basaltic crust that differentiated to form the oldest stable continental crust. However, the tectonic processes responsible for the formation of this continental material remain controversial. Suggested explanations include convergent plate boundary processes akin to subduction operating today and a variety of relatively shallow (50 km) subduction-like environments. Our results support previous Eoarchaean field evidence and analyses of igneous rocks that date to 4.0–3.6 billion years ago, which are consistent with subduction-like processes and suggest a primitive type of plate tectonics operated as long as 4 billion years ago on early Earth

    Cation distribution and valence in synthetic Al-Mn-O and Fe-Mn-O spinels under varying fO2 conditions

    Get PDF
    The spinel-group minerals, found in a range of igneous rocks, are resistant toweathering and can incorporate several multivalent elements, meaning they have the potential to provide insight into the redox conditions of parental magmas. Naturally occurring spinel can contain varying quantities of Mn, an element which occurs terrestrially and extra-terrestrially as Mn2+, Mn3+, Mn4+ and Mn5+. However, a lack of information on the effects of oxygen fugacity (fO2 ) on: (1) Mn valence state and cation distribution; and (2) on spinel-melt partitioning means that the potential for a Mn-in-spinel oxy-barometer remains largely untested. Here, we use electron probe microanalysis, micro-focus X-ray Absorption Near Edge Structure (XANES) spectroscopy and single-crystal X-ray diffraction (SC-XRD) to investigate cation distribution and valence state in spinels in the Al-Mn-O and Fe-Mn-O systems synthesized at ambient pressure under varying fO2 conditions. In contrast to previous studies, we find that the spectral resolution of the Mn K-edge XANES spectra is insufficient to provide quantitative data onMn valence state and site occupancy, although it does verify that Mn is incorporated as both Mn2+ and Mn3+, distributed over tetrahedral and octahedral sites. Combination of data from XANES and SC-XRD refinements can, however, be used to model Mn, Al and Fe valence and site occupancy. It would be expected thatMn-Fe spinels have the potential to record fO2 conditions in parental melts due to changes to the octahedral site under conditions that were more reducing. However, decoupling the effects of temperature and oxygen fugacity on the TFe3+-TMn2+ exchange in the Mn-Fe spinels remains challenging. In contrast, little variation is noted in Mn-Al spinels as a function of fO2 , implying that crystal chemistry and cation site geometry may significantly influence cation distribution, and by inference, crystal-melt partitioning, in spinel-group minerals
    corecore