
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The origin of Earth's first continents and the onset of plate
tectonics

Citation for published version:
Hastie, AR, Fitton, JG, Bromiley, GD, Butler, IB & Odling, NWA 2016, 'The origin of Earth's first continents
and the onset of plate tectonics' Geology, pp. G38226.1. DOI: 10.1130/G38226.1

Digital Object Identifier (DOI):
10.1130/G38226.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Geology

Publisher Rights Statement:
©The Authors   Gold Open Access: This paper is published under the terms of the CC-BY license.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/77047241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1130/G38226.1
https://www.research.ed.ac.uk/portal/en/publications/the-origin-of-earths-first-continents-and-the-onset-of-plate-tectonics(eca81601-0920-453b-807e-6300eb61926a).html


GEOLOGY | Volume 44 | Number 10 | www.gsapubs.org 1

The origin of Earth’s first continents and the onset of plate tectonics
Alan R. Hastie1*, J. Godfrey Fitton2, Geoffrey D. Bromiley2, Ian B. Butler2, and Nicholas W.A. Odling2

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2School of GeoSciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3FE, UK

ABSTRACT
The growth and recycling of continental crust has resulted in the 

chemical and thermal modification of Earth’s mantle, hydrosphere, 
atmosphere, and biosphere for ~4.0 b.y. However, knowledge of the 
protolith that gave rise to the first continents and whether the envi-
ronment of formation was a subduction zone still remains unknown. 
Here, tonalite melts are formed in high P-T experiments in which 
primitive oceanic plateau starting material is used as an analogue for 
Eoarchean (3.6–4.0 Ga) oceanic crust generated at early spreading 
centers. The tonalites are produced at 1.6–2.2 GPa and 900–950 °C 
and are mixed with slab-derived aqueous fluids to generate melts that 
have compositions identical to that of Eoarchean continental crust. 
Our data support the idea that the first continents formed at ca. 4 
Ga and subsequently, through the subduction and partial melting of 

~30–45-km-thick Eoarchean oceanic crust, modified Earth’s mantle 
and Eoarchean environments and ecosystems.

INTRODUCTION
The mechanisms responsible for generating the first continents and 

evidence for the beginning of plate tectonics beneath liquid water oceans 
remain topics of substantial debate (Dhuime et al., 2015; Foley et al., 
2002; Moyen and Martin, 2012; Nutman et al., 2012; Rapp et al., 2003; 
Smart et al., 2016). Up to 90% of juvenile Eoarchean (3.6–4.0 Ga) con-
tinental crust is composed of plagioclase-rich tonalite, trondjhemite, and 
granodiorite (TTG) granitoids (Foley et al., 2002; Hoffmann et al., 2011; 
Martin et al., 2005; Nutman et al., 2009; Polat and Hofmann, 2003; Rapp 
et al., 2003). Determining how these TTG rocks are generated is key to 
identifying what protolith(s) gave rise to the first silicic nuclei, under-
standing what planetary-scale tectonic processes were operating on the 
early Earth, and how continent formation could have modified Eoarchean 
environments and primitive ecosystems (Kamber, 2010; Nutman et al., 
2012; Wordsworth and Pierrehumbert, 2013).

EOARCHEAN TTG AND THE EARLY EARTH
Eoarchean TTG (ETTG) are mineralogically and geochemically dis-

tinct from other granitoids and have complex and diverse compositions 
(Hoffmann et al., 2011; Martin et al., 2005; Nutman et al., 2009; Smithies 
et al., 2003). Two recent compilations (Hoffmann et al., 2011; Nutman et 
al., 2009) show that ETTG have SiO2 >65 wt%, Al2O3 mostly ≥15 wt%, 
MgO contents from ~0.2 to 2.6 wt%, Na2O commonly >3 wt%, negative 
Nb-Ta-Ti anomalies on mid-oceanic ridge basalt (MORB)–normalized 
multi-element diagrams, and relatively high Sr and low Y contents (95–
497 and <20 ppm respectively) with moderate Sr/Y ratios (average ~40). 
Archean to present-day TTG are thought to be derived from partial melt-
ing of metabasic igneous rocks based on high pressure-temperature (high 
P-T) experiments and numerical modeling (Foley et al., 2002; Moyen and 
Martin, 2012; Rapp et al., 2003). Nevertheless, previous experiments on 
a range of metabasic rocks (amphibolite and eclogite) and compositions 
(MORB and island arc) have not generated partial melts with major and 
trace element compositions and geochemical patterns similar to ETTG 

(Adam et al., 2012; Beard and Lofgren, 1991; Laurie and Stevens, 2012; 
López and Castro, 2001; Patiño Douce and Beard, 1995; Rapp et al., 2003; 
Rapp and Watson, 1995; Rushmer, 1991; Sen and Dunn, 1994; Skjerlie 
and Patiño Douce, 1995, 2002; Springer and Seck, 1997; Winther, 1996; 
Wolf and Wyllie, 1994; Zhang et al., 2013; Ziaja et al., 2014).

Lithological, structural, and geochemical evidence has been presented 
in previous studies to suggest that plate tectonics, in some form, existed 
from ca. 4 Ga (Kerrich and Polat, 2006; Kusky et al., 2013). The small 
volume of surviving metamorphosed Eoarchean mafic rocks have pre-
dominantly island arc basalt, island arc picrite, and boninite compositions, 
are probably associated with short-lived subduction initiation processes, 
and are older than the ETTG that ultimately intrude them (Nutman et 
al., 2015, 2009; Polat and Hofmann, 2003). If subduction was occurring, 
then spreading centers must have also been present; as such, oceanic crust 
formed at these spreading centers may represent the protolith from which 
the first continents were derived. Eoarchean upper mantle is thought to 
have been hotter and less depleted in incompatible elements than the pres-
ent-day asthenosphere (Herzberg et al., 2010). Thus, Eoarchean spreading 
centers should have been characterized by more extensive partial melting, 
producing oceanic crust that was less depleted and thicker (~30–45 km) 
than at present (~7 km) (Abbott et al., 1994; Herzberg et al., 2010). Large 
eruptive volumes and thick (up to ~35 km) oceanic crust was generated 
in the Mesozoic by the partial melting of relatively hot and less incom-
patible element–depleted mantle plume heads to form oceanic plateaus 
(Fitton and Godard, 2004; Hastie et al., 2016). Hence, in terms of thick-
ness and geochemistry, if not mode of formation, oceanic plateau crust 
may represent a close analogue for Eoarchean oceanic crust generated at 
early spreading centers. The lack of continental crust at ca. 4 Ga means 
that Eoarchean oceanic crust, analogous to oceanic plateau crust, was the 
dominant surface rock type and a likely protolith from which the ETTG 
originated. However, no previous high P-T experimental studies have 
used natural primitive oceanic plateau material as a starting composition 
to investigate TTG genesis.

NEW HIGH P-T EXPERIMENTS
We undertook new high P-T experiments at 825–1000 °C and 1.6–2.2 

GPa on a primitive and depleted (relatively high MgO and low light rare 
earth elements [LREEs], Th, and U) anhydrous sample from the Ontong 
Java oceanic plateau (OJP) (see the Methods section of the GSA Data 
Repository1, and Tables DR1 and DR2 therein). All of the previous starting 
compositions reported in the literature are significantly different from our 
OJP sample in at least several major elements (Table DR1).

Evidence for Eoarchean subduction compelled us to explore a subduc-
tion environment from which to generate ETTG. A shallow subducting 
slab is converted to an amphibolite with ~2–3 wt% water (Peacock, 1993), 
and therefore, a similar amount of water was added to the anhydrous OJP 
material to form partial melts in equilibrium with an amphibolite contain-
ing plagioclase and/or garnet depending on the P-T conditions. Above 

1 GSA Data Repository item 2016282, experimental and analytical methods, 
and data Tables DR1–DR6, is available online at www.geosociety.org /pubs /ft2016 
.htm, or on request from editing@geosociety.org.*E-mail: a.r.hastie@bham.ac.uk
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~900 °C, the OJP sample undergoes partial melting to generate tonalite liq-
uids (Fig. 1A; Table DR3) and our experiments replicate melt-generating 
processes that occurred at the top of a subducting Eoarchean slab. Lower 
crustal sections (<3–4 km depth) would be essentially anhydrous (Foley 
et al., 2002; Moyen and Martin, 2012; Tang et al., 2016), and therefore, 
our results do not represent intracrustal melting mechanisms deep within 
Eoarchean oceanic crust.

With the exception of K2O, our tonalite melts plot within the major 
element liquid lines of descent for ETTG (Hoffmann et al., 2011; Nutman 
et al., 2009), and Figures 1B and 1C show this using TiO2 and MgO as 
examples (see Table DR4 for a full major element comparison). Previous 
experimental melts are highly variable but generally have a poor fit with 
regards to either TiO2 or MgO (or other major elements). Our K2O values 
are below those for ETTG (previous experimental liquids are again highly 
variable), but K2O, unlike other major elements, is easily mobilized in 
subducted slab-derived aqueous fluids, and so ETTG may have gained 
K2O from fluids derived by dehydration of subducted crust as well as from 
slab melts. Accordingly, we use the methodology of Kogiso et al. (1997) 
to mix our tonalites with a theoretical K2O-enriched aqueous slab fluid 
that increases the K2O content such that all of our experimental major 
element compositions now plot with ETTG (Fig. 1D; Table DR4). Using a 
primitive oceanic plateau starting composition with higher K2O concentra-
tions to increase the K2O abundances in our melts is not practical because 
primitive oceanic plateau lavas have very low K2O (average of ~0.1 wt% 
from the OJP and Caribbean, similar to our starting material) (Fitton and 
Godard, 2004; Hastie et al., 2016). Nevertheless, future experiments using 
more differentiated oceanic plateau material may be able to generate melts 
with higher K2O without requiring the addition of a slab fluid.

Figure 2A shows that the trace element concentrations of our tonalite 
liquids also have compositions nearly identical to that of ETTG (Table 
DR5). Importantly, the range of heavy REE (HREE) concentrations is 

replicated, from high-HREE contents with residual plagioclase to pro-
gressively lower HREE concentrations as residual garnet increases in 
modal abundance. Additionally, the liquids have low Eoarchean-like Sr 
contents ranging from 133 to 474 ppm, with melts in equilibrium with 
residual plagioclase having lower values (Fig. 2A). Residual amphibole 
and titanomagnetite also generate a characteristic negative Ti anomaly. 
Data from previous experimental liquids derived from Hadean greenstone 
(Adam et al., 2012) and back-arc starting materials (Rapp et al., 1999) 
largely overlap the ETTG data, but several elements plot outside the ETTG 
field (e.g., Sr), and the melts generally do not replicate the overall ETTG 
pattern as well as our OJP melts—particularly the negative Ti anomaly 
(even with residual rutile) (Fig. 2B).

Our tonalites have a variably small negative Nb anomaly (MORB-
normalized [mn] La/Nbmn ratios of 0.7–2.3) compared with ETTG (La/
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Figure 1. A: Normative anorthite-albite-orthoclase classification dia-
gram showing that melts in this study are tonalitic in composition. 
B–D: Representative TiO2-SiO2, MgO-SiO2, and K2O-SiO2 variation dia-
grams. TiO2-SiO2 and MgO-SiO2 data illustrate similar liquid lines of 
decent of our tonalites with regards to published Eoarchean tonal-
ite, trondjhemite, and granodiorite (TTG) data (Hoffmann et al., 2011; 
Nutman et al., 2009). Previous experimental liquids (see data in Table 
DR4 [see footnote 1]) can overlap Eoarchean TTG data, but are, for 
most part, highly variable. K2O-SiO2 plot shows that our data can only 
intersect Eoarchean data if aqueous slab-derived fluid is involved.

Figure 2. A: Normal mid-oceanic ridge basalt (N-MORB)–normalized 
multi-element diagram showing trace element contents of our experi-
mentally derived melts relative to Eoarchean tonalite, trondjhemite, 
and granodiorite (TTG) (Hoffmann et al., 2011; Nutman et al., 2009). 
Key shows residual aluminum-bearing phase(s) in equilibrium with 
melt (amph—amphibolite; gnt—garnet; plag—plagioclase). B: Multi-
element diagram showing trace element contents of experimental 
liquids derived from Hadean greenstone and back-arc starting mate-
rials (Adam et al., 2012; Rapp et al., 1999). C: Multi-element diagram 
showing trace element contents of our tonalites that have been mixed 
with slab-derived aqueous fluid. All diagrams have inset MORB-nor-
malized (mn) La/Nb-Gd/Ti plot to illustrate magnitude of negative Nb 
and Ti anomalies discussed in text.
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Nbmn ratios of 1.3–11.5). However, the La/Nbmn ratios in our melts can be 
increased if we mix them with the same slab-derived fluid that we used to 
increase the K2O (Fig. 1D). We assume that only Th, U, Sr, and the LREEs 
are mobile in a slab-derived aqueous fluid (Kogiso et al., 1997) (Table 
DR6). A 96% tonalite and 4% slab fluid mixture generates a higher La/
Nbmn ratio of 1.4–3.5 that brackets about half of the ETTG samples while 
still retaining ETTG-like concentrations for the other elements (Fig. 2C). 
Oceanic plateau starting material with higher TiO2 concentrations may 
stabilize rutile as a residual phase instead of titanomagnetite here, and 
this could lead to higher La/Nbmn in subsequent melts. Primitive oceanic 
plateau samples commonly have low TiO2 abundances similar to that in 
the starting material in our experiments (Fitton and Godard, 2004; Hastie 
et al., 2016); however, more differentiated oceanic plateau material does 
have commonly higher TiO2 and potentially could stabilize rutile. Again, 
future experiments using more differentiated oceanic plateau material are 
required to explore this possibility. Nonetheless, assuming that Eoarchean 
oceanic crust is similar to primitive oceanic plateau basalts, our tonalite 
melt and slab fluid mixtures represent the simplest model to explain ETTG 
major and trace element compositions.

PLATE TECTONICS ON THE EARLY EARTH AND 
ENVIRONMENTAL IMPLICATIONS

We demonstrate that partial melting of Mesozoic oceanic plateau–like 
material as an analogue for Eoarchean oceanic crust in a subduction 
environment generates melts geochemically analogous to the earliest 
continental crust (Fig. 2C). Modern-style steep subduction operated later 
in the Archean Eon (Abbott et al., 1994; Dhuime et al., 2015; Martin et 
al., 2005; Tang et al., 2016), but “flat” subduction or underthrusting of 
thick oceanic plateau–like oceanic crust began in the Eoarchean (de Wit, 
1998; Martin et al., 2005; Nutman et al., 2015; Smithies et al., 2003). 
Supporting this interpretation is that Mesozoic oceanic plateaus in the 
present-day ocean basins subduct at a shallow angle when they collide 
with convergent margins or continental crust (e.g., Van der Hilst and 
Mann, 1994) and generate lavas (adakites) that have similar compositions 
to ETTG (Hastie et al., 2015).

Our data support two possible flat-slab subduction scenarios (Nutman 
et al., 2015; Smithies et al., 2003): (1) a very thick (~45 km) oceanic slab 
underthrusts another equally thick slab (Fig. 3A), or (2) several thick 
(~25–30 km) oceanic slabs underthrust each other to form an imbricated 
stack of mafic plates (Fig. 3B). The top of the underthrusting plate(s) meta-
morphoses into amphibolites that contain plagioclase and/or garnet. Partial 
melting of these amphibolites forms ETTG plutons that ascend without 
being contaminated by a thick mantle wedge, and this explains low MgO 
contents in ETTG (Martin et al., 2005). The slab melting process gener-
ates huge volumes of ETTG melt that overwhelm the earlier arc-related 
magmatism and any accreted sedimentary sequences. Slivers of mantle 
material trapped on the subducting shear surface(s) will also contribute 
to the petrogenesis of minor volumes of quartz diorite and andesite in the 
Eoarchean rock record (Nutman et al., 2015). Additionally, although we 
can derive ETTG by fusion of primitive oceanic plateau–like Eoarchean 
oceanic crust, the partial melting of accreted island arc–like crust could 
still have been a potential protolith for forming ETTG (Hastie et al., 2015).

Underthrusting and/or imbrication of thick Eoarchean oceanic slabs 
would have generated emergent crust with predominantly mafic composi-
tions. The existence of subaerial mafic crust on the early Earth is supported 
by recent work on Rb/Sr, Ni/Co, and Cr/Zn ratios, REE abundances, and 
Nd-Sr isotope systematics in Archean igneous and sedimentary rocks 
(Dhuime et al., 2015; Kamber, 2010; Tang et al., 2016). Addition of lower-
density TTG rocks into this emergent mafic crust should have led to 
more elevated crustal topography and increased erosion and weathering 
rates that increased the rates of modification of ocean and atmospheric 
chemistry. Importantly, weathered and eroded mafic crust should have 
led to high Ni input into the marine environment to support the dominant 

methanogen communities of the Archean (Kamber, 2010). As TTG were 
slowly added to the evolving continental crust over time, the supply of Ni 
diminished to help bring about the demise of the methanogens (Kamber, 
2010; Tang et al., 2016). Volcanic systems built on the new continents 
would have also released large volumes of volatile elements (H2O, CO2, 
SO2, H2S, H2). These gases would have been contributors to potential 
greenhouse warming on the early Earth to help explain why the planet 
was not glaciated on a planetary scale despite lower solar energy incident 
on Earth in the early Archean (Nutman et al., 2012; Wordsworth and 
Pierrehumbert, 2013).
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