249 research outputs found

    Design strategies for shape-controlled magnetic iron oxide nanoparticles

    Get PDF
    Ferrimagnetic iron oxide nanoparticles (magnetite or maghemite) have been the subject of an intense research, not only for fundamental research but also for their potentiality in a widespread number of practical applications. Most of these studies were focused on nanoparticles with spherical morphology but recently there is an emerging interest on anisometric nanoparticles. This review is focused on the synthesis routes for the production of uniform anisometric magnetite/maghemite nanoparticles with different morphologies like cubes, rods, disks, flowers and many others, such as hollow spheres, worms, stars or tetrapods. We critically analyzed those procedures, detected the key parameters governing the production of these nanoparticles with particular emphasis in the role of the ligands in the final nanoparticle morphology. The main structural and magnetic features as well as the nanotoxicity as a function of the nanoparticle morphology are also described. Finally, the impact of each morphology on the different biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) are analysed in detail. We would like to dedicate this work to Professor Carlos J. Serna, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, for his outstanding contribution in the field of monodispersed colloids and iron oxide nanoparticles. We would like to express our gratitude for all these years of support and inspiration on the occasion of his retirement

    Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process

    Get PDF
    Magnetic nanoparticles are being developed as structural and functional materials for use in diverse areas, including biomedical applications. Here, we report the synthesis of maghemite (¿-Fe2O3) nanoparticles with distinct morphologies: single-core and multicore, including hollow spheres and nanoflowers, prepared by the polyol process. We have used sodium acetate to control the nucleation and assembly process to obtain the different particle morphologies. Moreover, from samples obtained at different time steps during the synthesis, we have elucidated the formation mechanism of the nanoflowers: the initial phases of the reaction present a lepidocrocite (¿-FeOOH) structure, which suffers a fast dehydroxylation, transforming to an intermediate "undescribed" phase, possibly a partly dehydroxylated lepidocrocite, which after some incubation time evolves to maghemite nanoflowers. Once the nanoflowers have been formed, a crystallization process takes place, where the ¿-Fe2O3 crystallites within the nanoflowers grow in size (from ~11 to 23 nm), but the particle size of the flower remains essentially unchanged (~60 nm). Samples with different morphologies were coated with citric acid and their heating capacity in an alternating magnetic field was evaluated. We observe that nanoflowers with large cores (23 nm, controlled by annealing) densely packed (tuned by low NaAc concentration) offer 5 times enhanced heating capacity compared to that of the nanoflowers with smaller core sizes (15 nm), 4 times enhanced heating effect compared to that of the hollow spheres, and 1.5 times enhanced heating effect compared to that of single-core nanoparticles (36 nm) used in this work

    Association between the donor to recipient ICG-PDR variation rate and the functional recovery of the graft after orthotopic liver transplantation: A case series

    Get PDF
    Background: Despite current advances in liver transplant surgery, post-operative early allograft dysfunction still complicates the patient prognosis and graft survival. The transition from the donor has not been yet fully understood, and no study quantifies if and how the liver function changes through its transfer to the recipient. The indocyanine green dye plasma disappearance rate (ICG-PDR) is a simple validated tool of liver function assessment. The variation rate between the donor and recipient ICG-PDR still needs to be investigated. Materials and methods: Single-center retrospective study. ICG-PDR determinations were performed before graft retrieval (T1) and 24 hours after transplant (T2). The ICG-PDR relative variation rate between T1 and T2 was calculated to assess the graft function and suffering/recovering. Matched data were compared with the MEAF model of graft dysfunction. Objective: To investigate whether the variation rate between the donor ICG-PDR value and the recipient ICG-PDR measurement on first postoperative day (POD1) can be associated with the MEAF score. Results: 36 ICG-PDR measurements between 18 donors and 18 graft recipients were performed. The mean donor ICG-PDR was 22.64 (SD 6.35), and the mean receiver's ICG-PDR on 1st POD was 17.68 (SD 6.60), with a mean MEAF value of 4.51 (SD 1.23). Pearson's test stressed a good, linear inverse correlation between the ICG-PDR relative variation and the MEAF values, correlation coefficient -0.580 (p = 0.012). Conclusion: The direct correlation between the donor to recipient ICG-PDR variation rate and MEAF was found. Measurements at T1 and T2 showed an up- or downtrend of the graft performance that reflect the MEAF values

    Cytotoxic drugs for patients with breast cancer in the era of targeted treatment: Back to the future?

    Get PDF
    Background: Despite current trend of targeted therapy development, cytotoxic agents are a mainstay of treatment of patients with breast cancer. We reviewed recent advances in cytotoxic therapy for patients with metastatic breast cancer (MBC). Materials and methods: Medline searches were conducted for English language studies using the term =MBC= and 'cytotoxic drugs'. The data search was restricted to the period 2000-2011. Results: Several novel cytotoxic compounds, all microtubule inhibitors, have been approved for clinical use in MBC: (i) nab-paclitaxel, reported to improve tumour response and decrease hypersensitivity reactions in comparison with other taxanes; (ii) ixabepilone, shown to have clinical benefit in taxane- and anthracycline-resistant disease and (iii) eribulin, shown to improve overall survival in heavily pre-treated patients, when compared with best available standard treatment. Agents, such as larotaxel, vinflunine, trabectidin and formulations, including cationic liposomal paclitaxel or paclitaxel poliglumex, are currently under evaluation in phase II/III trials. Conclusion: Toxicity and chemotherapy resistance are still major limitations in the treatment of patients with MBC. Further research into new cytotoxic compounds is needed in order to maximise benefit, whilst minimising toxicity

    Differential scanning calorimetry (DSC) and thermodynamic prediction of liquid fraction vs temperature for two high-performance alloys for semi-solid processing (Al-Si-Cu-Mg (319s) and Al-Cu-Ag (201))

    Get PDF
    There is a need to extend the application of semi-solid processing (SSP) to higher performance alloys such as 319s (Al-Si-Cu-Mg) and 201 (Al-Cu-Ag). The melting of these two alloys was investigated using differential scanning calorimetry (DSC) and thermodynamic prediction. The alloys had been processed by magneto-hydrodynamic (MHD) stirring before receipt to produce a microstructure suitable for SSP. The DSC results for the as-received MHD material were compared with those for material which has been taken through a complete DSC cycle and then reheated for a second DSC run. The effects of microsegregation were then analyzed. A higher liquid fraction for a particular temperature is found in the second DSC run than the first. Microstructural observations suggest this is because the intermetallics which form during the first cooling cycle tend to co-located. Quaternary and ternary reactions then occur during the second DSC heat and the co-location leads to enhanced peaks. The calculated liquid fraction is lower with 10 K/min DSC heating rate comparing with 3 K/min at a given temperature. The DSC scan rate must therefore be carefully considered if it is to be used to identify temperature parameters or the suitability of alloys for SSP. In addition, the starting material for DSC must represent the starting material for the SSP. With thermodynamic prediction, the equilibrium condition will provide better guidance for the thixoforming of MHD stirred starting material than the Scheil condition. The Scheil mode approximates more closely with a strongly microsegregated state

    Desempenho de Cultivares de Soja Transgênica (Intacta e Rr1) na Macrorregião Sojícola 1, Avaliadas na Safra 2013/14 ela Rede Soja Sul de Pesquisa.

    Get PDF
    A Rede Soja Sul de Pesquisa, composta por empresas de melhoramento e de pesquisa (CCGL Tecnologia, Coodetec, GDM Genética do Brasil, Embrapa Clima Temperado, Embrapa Trigo, Fepagro, Geneze Sementes, Nidera Sementes, Syngenta Seeds, TMG, Instituto Federal de Sertão e Fundação Pró-Sementes), conduz ensaios que avaliam, no mesmo ambiente e manejo, o desempenho agronômico de cultivares registradas por diferentes obtentores. Assim, o objetivo deste trabalho foi avaliar o rendimento de grãos de cultivares de soja das tecnologias Intacta e RR1, em ambientes da Macrorregião sojícola 1
    • …
    corecore