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Most of these studies were focused on nanoparticles with spherical morphology but recently there is an emerging
interest on anisometric nanoparticles. This review is focused on the synthesis routes for the production of uni-
form anisometric magnetite/maghemite nanoparticles with different morphologies like cubes, rods, disks,
flowers and many others, such as hollow spheres, worms, stars or tetrapods. We critically analyzed those proce-
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1. Introduction

In the last decades, nanocrystals have gained attention due to their
unique properties at the nanoscale and have been used in different tech-
nological applications such as energy storage, catalysis, photonics, elec-
tronics or biomedicine.[1-10] The improvement of their performance
has required innovative and continuous upgrades of the chemical pro-
cesses to yield “monodispersed” colloids consisting on uniform nano-
particles in both size and shape (e.g. size and shape distribution less
than 10%).[11-16] In these systems, the overall physicochemical prop-
erties reflect the properties of each constituent, leading to size/shape-
dependent performance materials. Interestingly, internal structure
[17,18] and mesoscopic ordering (3D aggregates or 2D superlattices)
[19-21] are also important parameters that control the materials prop-
erties. The control of these parameters is linked to the synthesis route
used for their preparation or the post-synthesis treatments and, most
of all, to the ligands used.

Studies dedicated to the formation mechanism of iron oxide
nanocrystals have invoked the classical nucleation and growth theories,
including LaMer and Dinegar theory for burst nucleation and diffusional
growth, and Ostwald ripening theory for second phase coarsening or
their combination.[22] These mechanisms take place in some of the
most common synthesis routes of iron oxides, i.e. co-precipitation and
high temperature decomposition of organic precursors. Co-precipita-
tion[23] takes place in aqueous media where iron ions form a
hexahydrated complex, which depending on the oxidation state and
pH can undergo a hydroxylation reaction to form the iron oxide nano-
particles. On the other hand, thermal decomposition takes place in
non-aqueous environment and usually occurs through a reaction be-
tween carboxylate groups (coming from the iron source) and the iron,
forming oxo bridges between irons that evolve to the iron oxide nano-
particles.[24] Apart from the up-above mention mechanisms of classical
nucleation and growth, colloidal anisometric particles of various well-
defined shapes synthesized in aqueous routes were shown to be com-
posed of smaller, primary nanocrystallites, indicative of aggregation
during the formation of the nanoparticles.[25] These cases were ex-
plained by a two-step mechanism, in which nucleation and growth
steps happen simultaneously, so the growth is controlled by aggregative
processes of small primary nanocrystals and not by molecular diffusion.
[26] Lastly, oriented attachment mechanism was also described for co-
precipitation and thermal decomposition, suffering spontaneous self-
organization of adjacent particles, so that they share a common crystal-
lographic orientation, [25,27,28] followed by the joining of these parti-
cles at a planar interface.[29]

Recently, different efforts have been made in developing new routes
for the synthesis of anisometric nanocrystals (i.e. nanocrystals which

differ from spherical shape) like nanocubes, nanorods, nanowires,
nanodisks, and nanoflowers among others.[30-36] These materials pos-
sess direction-dependent properties, high surface-to-volume ratio and
also particular crystal facets at the surface that can confer different reac-
tivity than their spherical equivalent.[37] The final morphology is deter-
mined during the growth stage in the synthesis procedure, where
thermodynamic and kinetic aspects control the reaction.[11,38-41] In
general, the shaped-controlled synthesis of iron oxide relied on the
preferential adsorption of capping molecules to specific facets[30,42-
44] or the existence of a small magnetic or dielectric moment among
the subunits that governs the aggregation processes.[45-47] Only in
few cases such mechanisms were evidenced by complete experimental
mechanistic work, mainly due to the difficulty in characterising the
nanoparticle formation from the first stages.[48] The current scenario
is that the most-developed recipes are not robust enough for synthesiz-
ing high-quality nanoparticles due to the poor understanding of the
mechanisms of nucleation and growth during nanoparticle formation.
The synthetic route represents the trickiest step in the design of a
nanomaterial for a specific application, as it will determine the particle
size/shape, the size distribution, the surface chemistry of the particles
and consequently their unique properties.

It is clear that under reduced dimensionality, shape is an important
matter. For example, in the case of Au nanoparticles, when Au turns
anisometric (rod-shape, nanocages, nanoshell, etc.) a second plasmon
resonance band arises at the near-infrared range which can be very ad-
vantageous for their application in biomedicine and sensing.[49-51]
Changing rod aspect ratio affects the longitudinal plasmon resonance
frequency, which can be tuned systematically. Furthermore, ultrathin
gold nanowires present mechanical flexibility and high conductivity.
[52] Platinum nanocrystals, with high-performance in catalysis, have
been obtained with peculiar morphologies (cubic dendrites or planar
tripods) that provide high surface to volume ratio and controlled crys-
tallographic facets.[53,54] For example, the hydrogenation of benzene
is strongly affected by the Pt nanoparticle shape. Both cyclohexane
and cyclohexene molecules were obtained using cubo-octahedral Pt
nanocrystals, whereas only cyclohexane was selectively formed on
cubic nanocrystals.[55] Anisometric magnetic nanoparticles of Fe, Co,
FeCo and CoNi with high aspect ratio and enhanced magnetic properties
have been obtained for permanent magnet applications. [31] However,
the stability, as well as the dipolar interactions, limits the application of
these materials.[56]

Among the iron oxide nanoparticles, the ferrimagnetic ones, magne-
tite and maghemite, (called for short “magnetic nanoparticles”) are of
particular interest because of their potential in fields such as magnetic
recording, separation and recycling, and in the biomedical area, in mag-
netic resonance imaging (MRI), targeted drug delivery, hyperthermia
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treatment of solid tumours, gene therapy and tissue regeneration.
[44,57-62] For the above uses, most of the synthesis studies have
been concentrated on spherical magnetite nanoparticles since they
are, in general, easily obtained according to reproducible experimental
procedures.[63,64] However, introducing shape anisotropy in magne-
tite nanoparticles can change substantially their magnetic properties.
[44,65,66] Shape anisotropy can be up to two orders of magnitude larger
than crystal anisotropy leading to an increase in the coercive field[67-
69] and strongly affecting the behaviour of the particles under an alter-
nating magnetic field. Thus, nanodisks and nanorods of magnetite have
been shown to induce mechanical damage of cancer cells,[70-72] while
cubes, nanorings and nanoflowers seems to be ideal heat mediators for
hyperthermia.[35,73-75]

In this review, we present an overview and recent progress on the
preparation of well-controlled magnetite/maghemite nanoparticles
with non-spherical shapes and the mechanisms proposed to control
their formation. We have focused on the magnetite nanoparticle
growth, either in one-step or through a templated-assisted reduction
process from other iron hydroxides/oxides such as goethite,
lepidocrocite and hematite nanocrystals, where the anisometric mor-
phology of the precursors is preserved after the reduction process. We
describe the effect of key parameters on the final magnetite morphol-
ogy, including: (i) control of the precursor’s formation and growth, (ii)
effect of the precursor crystalline phase and (iii) crystal orientation
and facets exposed on the final magnetic nanoparticles as a function of
the shape. Those parameters are classified as physical parameters
(those that concern the number of steps and temperature and heating
rate in each step) and chemical parameters (nature and concentration
of reagents and solvents). We dedicate a section to ligands, as it is one
of the key parameters that control the reaction and can be manipulated
to reach the desired morphology. Ligands can be very diverse in nature
and they are able to favour a thermodynamic and or kinetic regime by
binding specifically to a particular face altering its stability or its relative
growth rate. Structural and magnetic properties for each morphology
are also reviewed and related to the synthetic route. Special emphasis
has been paid to the effect of the shape on cell uptake, biodistribution
and degradation in biological environments. Finally, the advantages of
using magnetic anisometric nanoparticles for biomedical applications
such as magnetic hyperthermia, magnetic resonance imaging, drug de-
livery and others are also described. A flow chart summarising the con-
tent of this review is presented in Fig. 1.

2. Synthesis of anisometric magnetic nanoparticles

Magnetite has a cubic inverse spinel structure and its space group is
Fd3m with a cell parameter of 8.394 A.[76] The unit cell contains 32 0*

Fig. 1. Flow chart describing the content of this review.

ions forming a cubic closed-packed system. Fe(II) ions are disposed in
the octahedral sites and Fe(lII) ions are located in both octahedral and
tetrahedral sites (Fig. 2). Maghemite (y-Fe,0s3) is formed during the ox-
idation of magnetite or by dehydration of lepidocrocite. [77] The direct
synthesis of maghemite is not possible probably due to the presence of
vacancies in octahedral positions (Fig. 2).[78] Maghemite (y-Fe,03) has
an inverse spinel structure like magnetite with a cell parameter slightly
smaller (a=8.351-8.33 A), containing vacancies located in the octahe-
dral positions and Fe(IIl) ions in both octahedral and tetrahedral posi-
tions. The stoichiometry of maghemite can be described with the
formula Ferg(Fes/;30;,3)on04 (Td= tetrahedral sites; Oh= octahedral
sites). Depending on the extent and nature of vacancies ordering,
three different crystal symmetries for maghemite can be described. In
the first one, the vacancies are randomly distributed in the octahedral
positions (Fd3m space group). In the second one the vacancies are par-
tially ordered (P432,2 and P4,2,2). In the last one, the vacancies are
perfectly ordered forming a tetragonal superstructure along the c-axis
where the value of c is around three times the value of a (P432,2
space group).[79-81]

There are two different approaches for the direct synthesis of mag-
netite, i) starting from iron(Il) or iron(Ill) inorganic salts such as ni-
trates, sulphates or chlorides, [83,84] or ii) starting from organic
precursors such as iron oleates,[85] acetates,[86] acetylacetonates[87]
or pentacarbonyl.[88] In most cases, a mild reducer or oxidizer is
added to the reaction to get the final Fe;04 stoichiometry. In other
cases, indirect methods involve the initial synthesis and reduction of dif-
ferent iron oxides (hematite)[79] or oxohydroxides (goethite,
akaganeite or lepidocrocite)[62] which act as shape-template setting
the final dimensions and shape of the nanostructure. If akaganeite or
goethite are used as shape-templates, they are thermally transformed
to magnetite through hematite. The well-known reduction of hematite
to magnetite through a topotactic reaction is performed in dry condi-
tions, i.e. static or dynamic atmosphere of H,/Ar at temperatures not
lower than 360 °C.[89] The reduction can also be performed in wet con-
ditions either in organic or aqueous media. In organic media, heating
hematite or iron oxohydroxide nanoparticles in trioctylamine in the
presence of oleic acid at around 350 °C leads to magnetite.[90,91] In
aqueous media the reduction to magnetite is achieved by using hydra-
zine at alkaline pH range between 9.5 and 11.5 [92] through a dissolu-
tion-recrystallization mechanism starting either from hematite or
from an oxihydroxide.[93,94] The dissolution takes place in alkaline en-
vironments and consists on the reduction of Fe3* in the crystal structure
releasing Fe?" ions, which in turn react with their surface groups, nucle-
ating magnetite. This mechanism can be catalysed by the presence of
external Fe?™ [95] and is usually associated to a change in the shape
of the nanoparticle.[96] Recently, it has been reported that dissolu-
tion-recrystallization mechanism can be slowed down by the use of
molecules with acetate groups in a polyol media, which also provide a
reductive medium necessary for the transformation of 3-FeOOH to
magnetite. It is notable the role of acetate groups, which have high affin-
ity for Fe>™ ions, slowing the dissolution of the nanoparticles, allowing
the direct transformation to magnetite and, most importantly, preserv-
ing the nanoparticle’s shape.[97]

In the case of maghemite, it can be obtained through oxidation of
magnetite at 240 °Cin air. However, when the size reduces to nano, ox-
idation temperature can be reduced down to 50 °C and even at room
temperature for long periods of time (1 year for sizes below 10 nm).
[98] Finally, maghemite can also be obtained through dehydration of
lepidocrocite (Fig. 3).

It is important to mention that any colloidal synthesis route involves
two main stages: nucleation and growth/agglomeration. In the case of
the synthesis of monodisperse nanoparticles, both stages must be sepa-
rated in temperature and time, otherwise broad size distributions and
diverse particle morphology are obtained. For the case of anisometric
nanoparticles, growth stage is the critical step responsible for the final
morphology that in all cases results from the induction of different
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Fig. 2. Crystal structure and X-ray diffraction pattern (using Cu Ko radiation) of magnetite and maghemite phases. Adapted with permission from [82]. © 2015 National Institute for
Materials Science.

Fig. 3. Synthesis scheme and phase transformation to prepare Fe;04 and y-Fe,03 nanoparticles.
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growth rates on low index planes such as {111}, {110} and {100} with
low surface energy.

2.1. Cubic-shaped nanoparticles

Magnetite is most often found as cubes or octahedrons, and less fre-
quently as rhombododecahedrons. All of these forms and their combi-
nations, i.e. 0-D cubic-shaped nanocrystals, are compatible with the
symmetry of the spinel structure (cubic) and its synthesis in liquid
can be carried out by different routes depending on the nature of the
solvent and the iron precursors (Fig. 4).

In water, the precipitation of an iron(II) salt in alkaline media in the
presence of a mild oxidant such as potassium nitrate (KNOs) at 90 °C
renders magnetite nanocubes but only under certain conditions.[99]
The most critical parameter is the [Fe(II)]:2[OH] ratio, so 33 nm
nanocubes are achieved when [Fe(II)]:2[OH] ratio is 0.77. Interestingly,
when [Fe(Il)]:2[OH] gets closer to 1, size becomes larger (76 and 169
nm for [Fe(Il)]:2[OH] ratios of 0.97 and 0.997 respectively) and shape
evolves to octahedral morphology. The kinetics of the reaction is af-
fected by the pH and how far/close it is from the isoelectric point of
magnetite (pH~7). [100,101] In excess of OH", i.e. the pH is above
Fe30, isoelectric point, cubic particles are grown by slow diffusion of
Fe(OH), species to the primary particles (negatively charged). How-
ever, if the excess of OH™ is negligible, the growth takes place mainly
by aggregation and the kinetic is much faster. Primary particles are
not repelling each other since they are not sufficiently charged and
the aggregation is followed by subsequent recrystallization leading to
octahedral particles with larger sizes from few nanometers up to

microns. Interestingly, the addition of ethanol induces the cubic mor-
phology as well, and reduces the final size of the particles because it
modifies the hydrolysis of ferrous and ferri oxo-aqueous species de-
creasing the critical diameter at which nuclei can be formed, and finally
slows down the growth hampering the diffusion process.

The decomposition of iron organic precursors in high boiling-point
organic solvents in the presence of surfactants can lead to cubic magne-
tite nanoparticles with in a wide size range and narrow size distribution
(Fig. 5). The particle size can be tailored by changing both, the precursor
concentration and reflux time. For example, 79 nm Fe304 nanocubes
were grown by heating iron(IIl) acetylacetonate in benzyl ether in the
presence of oleic acid.[102] Then, by doubling the precursor concentra-
tion and increasing the reflux from 30 min to 1, 1.5 and 2 hours it is pos-
sible to achieve larger particles of 110, 150 and 160 nm respectively.
The cubic shape was induced by the high amount of active species in so-
lution being the growth kinetically controlled. In addition, surfactant/
precursor molar ratio and the type of surfactant are other crucial param-
eters to control the final nanoparticle size. For example, by decreasing
the oleic acid/precursor ratio from 5/1 to 2/1 the mean size of the mag-
netite nanocubes increases from 16 to 104 nm.[104] Oleic acid has a crit-
ical effect because it has the capacity of delaying the nucleation towards
higher temperatures leading to smaller nuclei, but also modulating the
particle growth kinetics. If oleic acid is exchanged by decanoic acid,
smaller particles are grown (size range of 5-30 nm with decanoic and
16-100 nm with oleic acid [105]) and can be tuned by changing the sur-
factant/iron ratio. Decanoic acid is much shorter than oleic acid and also
linear, so probably the coordination with Fe30, facets is more efficient
leading to a drastic decrease in the mean size. The same effect was

Fig. 4. Scheme of the synthetic routes for the growth of (a) Fe304 nanocubes and (b) Fe304 nanoctahedrons. (Acac = Acetylacetonate, Acet = Acetate, EtOH = Ethanol, HDD = 1, 2-
hexadecanediol, TOPO=Trioctylphosphine oxide, Br'/NR4 = Tetraalkylammonium bromide). Synthesis routes adapted from [99,102-111].
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Fig. 5. TEM images of magnetite nanocubes synthesized by thermal decomposition with different mean sizes, a) 6.5 nm (Reproduced from [106] with the permission of AIP Publishing.; b)
20 nm, adapted with permission from [105] Copyright (2010) American Chemical Society; ¢) 45 nm, adapted with permission from [112] Copyright (2011) American Chemical Society; d)
79 nm, adapted with permission from [102] Copyright (2009) American Chemical Society; e) 110 nm. adapted with permission from [102] Copyright (2009) American Chemical Society.

observed with 4-biphenylcarboxylic acid, which leads to a sharp de-
crease in the mean particle size from 79 to 22 nm when used as impurity
with oleic acid in the decomposition of iron(IIl) acetylacetonate.[102]

Heating rate is other critical parameter to control the final nanopar-
ticle size. In the case of high temperature decomposition of organic pre-
cursors, the iron source and surfactant dissolved in the solvent are
subjected to a thermal treatment achieving temperatures well above
200 °C. In this route, the heating rate critically defines the number of
formed nuclei, and hence the size of the final nanoparticles. Therefore
the heating profile applied should be controlled with an external
thermo-controller. For example, a huge enlargement from 13 to 180
nm can be achieved when the heating rate slows down from 5.2 to 0.8
°C-min"! in the decomposition of iron(Ill) acetylacetonate and decanoic
acid in benzyl ether. The heating rate dominates the nucleation process
of the nanocubes so when heating rate decreases the nucleation rate de-
creases too, less nuclei are formed and they are able to grow more.[106]
Interestingly, in the same synthesis but using a surfactant mixture of
oleic acid, oleylamine and 1,2-hexadecanediol, when the heating rate
decreases from 35 to 5°C-min’}, the size of the cubes increases from 5
to 30 nm.[106]

The nature of the surfactants has also been demonstrated to deter-
mine, at least in part, the final morphology of magnetite nanoparticles
synthesised in organic media. For example, the addition of sodium or
potassium oleate leads to cubic nanocrystals between 9 and 23 nm.
[107] However, if the surfactant is replaced by oleic acid or
dibutylammonium oleate, spherical nanoparticles were grown. In this
case cubic shape is induced by the selective adhesion of the sodium
and potassium oleate on the {100} facets reducing its growth rate.
[113] However, it should be noted that depending on the amount of ole-
ate and the synthetic conditions during and post-synthesis, non-stoi-
chiometric wiistite (FeO) can be formed.[114,115] Trioctylphosphine
oxide (TOPO), chloride ions[116] and 3-amyrin[117] are other ligands
which selectively bind to {100} facets inducing cubic shape.

Changing the precursor, it is possible to obtain magnetite octahe-
drons by thermal decomposition. Thus, the decomposition of iron(III)
oleate in tetracosane in the presence of oleylamine leads to 21 nm
Fe;04 octahedral nanocrystals induced by the selective binding of
oleylamine to {111} facets.[118] Furthermore, the use of quaternary am-
monium bromide salts (which generate trioctylammonium bromide at
high temperatures)[119,120] in conjunction with oleic acid in the de-
composition of iron(Ill) oleate using squalene as solvent also leads to
50 nm Fe304 octahedrons. Interestingly, the increase of the
alkylamine/Fe ratio from 2:1 to 10:1 using Fe(CO)s in o-dichloroben-
zene leads to the formation of 50 nm hexagonal-shaped Fes0,
nanocrystals because once the octahedral {111} facets saturated of
alkylamine molecules reduce their growth there is chance for the do-
decahedron form {110} to appear, the combination of both forms

project as a hexagon in the TEM micrographs.[121] Finally, heating a so-
lution of iron(II) chloride in oleylamine up to 200 °C at a rate of 10 °
C-min™! renders 8 nm Fe;0,4 octahedrons.[122] A synthetic strategy
lying between the aqueous and organic media consist on the hydrolysis
of iron(II) acetate in the presence of oleylamine dissolved in xylene.
Heating the reaction mixture followed by fast injection of water triggers
the hydrolysis of the Fe-oleylamine complex leading to 9 nm
nanocubes.[109]

Recently, 47 nm rhombohedral Fe30,4 nanocrystals were synthesized
using a three-step process, which comprises the generation of hematite
nanoparticles, further encapsulation in silica and final reduction to mag-
netite. The first step is critical for the growth of rhombohedral scaffold-
ing and it was achieved by solvothermal synthesis by heating at 180 °C
for 12 hours iron(Ill) chloride in a mixture of ethanol/water 5:1 using
sodium acetate as base.[90]

Finally, biological synthesis of iron oxide nanocrystals, cubes and oc-
tahedron between 30 and 100 nm in size, can be generated by bacterial
magnetosomes following a natural pathway and constitutes one of the
most fascinating processes of iron biomineralization.[103,110,111]
These magnetosomes (often ferrimagnetic) are grown enveloped in
membranes and form chains, which allows the cells to align with exter-
nal magnetic fields.

2.2. Elongated nanoparticles

By “elongated nanoparticles” we cover all the 1-D nanostructures
described in the literature with different names such as nanowires,
spindle, ellipsoids, needles, nanobelts, nanorice, rods or nanowhiskers
(Fig. 6). The different names are attributed to their different axial ratio
(length/width) and final morphology at the particle edges (sharp or
rounded).

Traditionally, synthetic strategies for the growth of elongated mag-
netic iron oxide nanostructures were based on aqueous media using
other iron oxides or oxohydroxides as templates (Fig. 7 and 8). Interest-
ingly, in the last years, one-step organic-based approaches have come
up succeeding in the direct synthesis of elongated Fe30,4 nanoparticles
that differ in the intermediate and the strategy to tailor length and
axial ratio. Final properties will depend mainly on the geometry of the
particles but also on the synthetic route used as it determines the inter-
nal structure (crystallinity, porosity and long axis direction).

Starting at the end of the 80’s and particularly during the 90°s, the
main strategy for the synthesis of elongated magnetic nanoparticles
for magnetic recording media was using goethite as shape template,
followed by its transformation to hematite and further reduction to
magnetite.

Templating with goethite (a-FeOOH) as an intermediate, larger
axial ratios up to 10 can be accomplished although the further thermal
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Fig. 6. Different types of elongated nanostructures reported in the bibliography. a) spindles, adapted/reprinted with permission from [123] © 1984, by Elsevier; b) nanobelts, adapted/
reprinted with permission from [124], copyright (2011) American Chemical Society; c) nanorods, adapted/reprinted with permission from [91]), copyright © 2016, by Wiley; d)
nanowhiskers, adapted/reprinted with permission from [125], copyright (2011) American Chemical Society; e) nanorice, adapted/reprinted with permission from [126], copyright ©

2008, by Wiley.

reduction produces a high porous structure associated to
dehydroxilation. Uniform goethite particles with lengths ranging be-
tween 80 and 250 nm and diameters between 25 and 65 (axial ra-
tios~3-4) can be obtained by hydrolysis and oxidation of iron(II)
sulphate in water in the presence of carbonate ions at 40 °C. The concen-
tration of iron(II) sulphate and carbonate, air flow rate and reaction
time are critical parameters to tailor the final nanoparticle dimensions.
[126] Larger a-FeOOH particles can be grown by increasing the pressure
and substituting sodium carbonate (Na,COs) by sodium acetate (NaAc).
The reaction takes place by hydrothermal synthesis at 100 °C for 8 hours
and leads to goethite rods of 170-300 nm in length and 15-25 nm in di-
ameter (axial ratio around 10).[127]

Akaganeite (3-FeOOH) is the other iron oxohydroxide phase that
serves as template for final synthesis of magnetite 1-D nanorods. In gen-
eral, the hydrolysis of iron(Ill) chloride above 0.02M at 60-100 °C in
water for several hours renders monoclinic 3-FeOOH anisometric nano-
particles, whose length depends on the synthesis temperature, hydroly-
sis time, concentration of iron(Ill) chloride, internal pressure
(hydrothermal synthesis) and the presence of several additives acting
as pH modifiers to control the reaction kinetics or as shape/growth
modulators. For example, 3-FeOOH nanoparticles of 500 x 50 nm can
be synthesized in water with an HCI concentration of 0.012 M at 100 °

C for 24 hours.[92] Smaller rods of 200 x 22 nm were grown at 60 °C
without HCI and with a shorter the reaction time (5 h) rods of 72 x 10
nm were produced.[133] Reduction was carried out in liquid after
protecting the akaganeite particles with silica by heating at 245 °C in
2-hydroxiethyl ether. If the initial concentration of iron(III) chloride is
around the nucleation limit for akaganeite (0.02 M), rods with 63 x 14
nm can be achieved.[134] Smaller rods (50 x 10 nm) were synthesized
by hydrothermal treatment using short heating times (6 h).[91] Other
strategy leading to a drastical reduction in size was the synthesis of
akaganeite nanoparticles in the presence of polyethyleneimine (PEI)
(from 291 x 42 nm to 32 x 5 nm (My PEI= 2500 g/mol)), because PEI
is adsorbed on the lateral plane (200) of the nanorods, changing also
the shape from rod to spindle with the edges more rounded (Fig. 8).
[135,136] Moreover, the presence of polyvinylpryrrolidone (PVP) at
100 °C for 12 h lead to hollow elongated particles of 300-200 x 30-50
nm after reduction.[128]

Finally, the use of a ternary water-in-oil/water system has been used
to grow 3-FeOOH nanoparticles. In this approach the iron(III) chloride
solution is placed at the bottom and a water-in-oil microemulsion
formed with cyclohexane and Igepal CO-520.[129] The aqueous phase
of the microemulsion contains NH4OH and when the system is
destabilized by action of the temperature a phase separation begins.

Fig. 7. Scheme of the synthetic routes to produce elongated Fe;04 nanostructures. (PEI = Polyethyleneimine, PVP = Polyvinylpyrrolidone, TOP = Trioctylphosphine, DDAB = dodecyl

dimethylammonium bromide). Synthesis routes extracted from references [46, 125-132].

Drug Deliv. Rev., https://doi.org/10.1016/j.addr.2018.12.008

Please cite this article as: A.G. Roca, L. Gutiérrez, H. Gavilan, et al., Design strategies for shape-controlled magnetic iron oxide nanoparticles, Adv.



Image of Fig. 6
Image of Fig. 7
https://doi.org/10.1016/j.addr.2018.12.008

8 A.G. Roca et al. / Advanced Drug Delivery Reviews xxx (XXxX) XXX

Fig. 8. TEM images of Fe;0, elongated nanoparticles with different sizes modulated by tailoring different reaction parameters. a) Concentration of KH,PO4. Adapted/reprinted with
permission from [46], © 2010, by Cambrindge University Press; b) Effect of urea; adapted/reprinted with permission from [130] © 1999, by Elsevier; c) Concentration of
polyethylenene imine; adapted/reprinted from [135], ©2015, by The Royal Society of Chemistry; d) Oleic acid/hexadecylamine ratio. adapted/reprinted with permission from [132],

copyright (2016) American Chemical Society.

By gravity action, NH4OH migrates to the bottom of the tube lead-
ing to the hydrolysis of the iron(Ill) chloride. Temperature reaction
and concentration of iron(Ill) chloride and NH4OH are the critical
parameters to tailor the final dimensions. 3-FeOOH rods of 45 x 8
nm were achieved when the concentration of FeCl; was 0.1 M
and the volume of NH4,OH was 320 pL at 100 °C, while the longest
rods (450 x 120 nm) where grown using 1 M [FeCls] and 128 pL
NH40H at 50 °C. The nucleation is less intense at acidic pHs, (i.e. in-
creasing the concentration of iron(Ill) chloride or decreasing the
concentration of NH4,OH) and at lower temperatures, leading to
larger particles.

Other strategy for the synthesis of elongated magnetite nanoparti-
cles is based on the synthesis of hematite (a-Fe,O3) elongated parti-
cles as shape template. Hematite can be directly synthesized by
forced hydrolysis of iron(Ill) salt (i.e. chloride and perchlorate) at
100 °C during several days in the presence of phosphate ions, which
are the responsible for conferring the anisometric growth along the
c-axis and setting the axial ratio, leading to particles from 100 to 500
nm in length and axial ratios between 1 and 5 (Fig. 8).[46,79]. In gen-
eral, the particle size can be tailored with the concentration of the fer-
ric salt, pH, solvent and ions present in the solution.[94,137]
Furthermore, hot-injection of iron(Ill) chloride salt at 100 °C leads to
hematite nanostructures with axial ratios around 3.[138] The main dis-
advantages of the direct synthesis of hematite is the long reaction time
(several days) and the poor yield. Additives such as urea overcome
these disadvantages reducing the synthesis time and increasing

the yield (because of the hydroxyl anions release that promotes
-FeOOH precipitation) resulting in structures with an aspect ratio
close to 10. [130,139] [130]

Direct synthetic methods to grow 1D Fe304 nanostructures based in
organic media and surfactants have experienced a great upsurge in the
last years. These routes for the growth of elongated particles start with
the formation of nuclei with octahedral shape. The exposition of {111}
facets permits the anisometric growth along the [111] direction.[131]
Another option is the growth along the [100] direction by elongation
of the octahedral edges. For example, seeded-growth of a mixture of
iron(0) pentacarbonyl with trioctylphosphine (TOP) to a suspension
containing 2 nm Fe particles capped with TOPO at high temperatures,
followed by a reflux with dodecyl dimethylammonium bromide
(DDAB) leads to Fe nanorods of 11 x 2 nm.[131] By increasing the con-
centration of DDAB it is possible to reach magnetite nanoparticles 27
nm in length without changing the diameter. The formation of the rod
shape can be understood by the unidirectional coalescence of the spher-
ical nanoparticles induced by the strong attachment of the DDAB mole-
cules to the central part of the particle.

The synthesis of iron oxide nanowhiskers (20 x 2 nm) can be done
by selective decomposition of iron(Ill) oleate in 1-octadecene in the
presence of a surfactant mixture composed by oleic acid, oleylamine
and TOPO.[125] In this synthesis route, the temperature (150 °C) is
too low to produce the decomposition of iron(III) oleic complex which
is reported to take place at temperatures above 250 °C.[107] Conse-
quently, an alternative mechanism suggests that these nanowhiskers
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were produced by hydrolysis of iron(III) oleate complex. In this sense, a
further step forward in the synthesis was the exchange of the iron(III)
oleate by iron(0) pentacarbonyl with a more controllable decomposi-
tion and reactivity. The addition of iron(0) pentacarbonyl to a mixture
of hexadecylamine, oleic acid and 1-octanol in a solvothermal synthesis
heated at 200 °C for 6 hours renders rods of 63 x 6.5 nm in size (axial
ratio~10). Length and axial ratio can be increased up to 140 x 12 nm
(axial ratio ~12) by increasing the amount of hexadecylamine from 0.2
to 0.6 g probably due to the amount of water generated during the hy-
drolysis (Fig. 8). In summary, the proposed mechanism of this reaction
is as follows. First, oleic acid is involved into two different reactions, i)
formation of Fe(0)-oleic complex and ii) formation of an amide via reac-
tion with hexadecylamine which renders water molecules. Then, part of
the Fe(0)-oleic complex generates Fe nuclei, which rapidly oxidizes to
FeO and the rest is hydrolysed by the water molecules generated before
leading to Fe;04. Due to the slow water releasing rate, the cluster con-
centration is below the nucleation threshold so there is a
heteronucleation of the initial Fes04 nanorods on the surface of the
FeO nuclei. Finally, another important parameter to control the final di-
mension and aspect ratio is the autoinduced pressure inside the reactor
that can be tailored by changing the filling percentage of the reaction
vessel. When the reaction volume decreases from the 80 to 53%, the par-
ticle length decreases from 163 to 56 nm and the axial ratio from 12 to 6
[132]

2.3. Disk-shaped nanoparticles

The synthesis of Fe;04 nanodisks/nanoflakes/nanoplates has been
reported through a two-step methodology consisting on the formation
of a-Fe,03 by the solvothermal route and further reduction to Fe304
(Fig.9). The formation of hematite nanodisks can be achieved by the hy-
drolysis of iron(Ill) chloride in a mixture of water/ethanol in the pres-
ence of sodium acetate. This reaction is carried out at 180 °C for 12
hours growing nanodisks with 226 x 26 nm size (aspect ratio, i.e. thick-
ness/diameter ~ 0.11).[140] Diameter and thickness of the hematite
nanoparticles can be controlled by the amount of water in the solvent
and sodium acetate.[141] Thus, nucleation is delayed in absence of
water forming spherical particles at first instance, which rapidly trans-
form to iron oxide structures with circle-pancake shape instead of hex-
agonal plates after several days. Water acts as an accelerating agent,
which leads to an increase of the thickness and a decrease of the diam-
eter. Diameter and thickness of nanodisks changes from 400 x 8 nm to
40 x 40 nm respectively when the volume of water added increases
from 0.3 to 2.5 mL. The decrease of the alcohol polarity also leads to a
decrease in the aspect ratio. Finally, sodium acetate regulates the
growth of the nanodisks because it strongly coordinates to surface
atoms on (001) planes of hematite. If sodium acetate is not present or
is just in a minimum amount in the reaction, small particles are synthe-
sized. However, for a certain range, it coordinates to (0001) facets

Fig. 9. Synthesis routes to obtain magnetite nanodisks/plates and nanoflowers. (PVP = Polyvinyl pyrrolidone, NMDEA = N-methyldiethanolamine, DEG = Diethyelene glycol). Synthesis

routes from references [140, 142-147].
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leading to a decrease in the nanoparticle aspect ratio. Based on the same
strategy, magnetite nanodisks were synthesized by using Na,SiO3 in-
stead of sodium acetate, and heating in a microwave digestion system
for 30 minutes at temperatures higher than 140 °C, achieving nanodisks
of 100 x 60 nm.[142]. Smaller nanoplates of 35 nm in lateral size with a
thickness of 10-13 nm were synthesized in two steps (Fig. 9). The first
step consists on the reaction of iron(Ill) chloride with PVP in ethanol
at 240 °C under solvothermal conditions to lead to maghemite nanopar-
ticles. In a second step, using n-octanol as solvent, the addition of more
PVP and hydrazine and heating up to 180°C for 6 hours completes the
transformation to magnetite .[143]. Nanoplate size can be controlled
through the first reaction by tailoring the temperature and the reaction
time.

2.4. Flower-like nanoparticles

Magnetite nanoparticles are able to aggregate in a hierarchical way
and form 3D structures with flower-like morphology. [148] Apart
from the core size, another important parameter is the final aggregate
size of the particles and most importantly the degree of fusion between
cores.[149] Both sizes are controlled and tailored essentially by selecting
the synthetic route and the reagents involved in the reaction. There
are two clear strategies to synthesize the 3D flower-like Fe304

nanostructures that can be differentiated in the final size: the polyol
route and thermal decomposition (Fig. 9b and 10).

The polyol method used in the growth of flower-like nanostructures
consists in the alkaline hydrolysis of iron salts (usually chlorides) at high
temperatures (usually 210 or 220°C) and slow rates.[150] Interestingly,
the inclusion of N-methyldiethanolamine (NMDEA) in the solvent mix-
ture with ethylene glycol (EG) or alone makes possible the formation of
flower-like Fes0,4 nanoparticles, otherwise spherical single core Fe30,4
particles are grown.[151] The generation of primary units of 4-6 nm
quickly agglomerates to 11-16 nm cores that aggregate up to 55 nm par-
ticles depending on the amount of NaOH and the time at 220 °C.
[35,144] Starting from an iron(II) salts in polyol media, in the presence
of different polymers such as PVP, or citrate and using an autoclave for
long time heating at high temperature, larger flower-like particles be-
tween 50 and 250 nm in size composed of 5-15 nm cores are obtained.
PVP and NaAc can be used to increase the stability of the as-synthesized
colloid, achieving flower-like nanoparticles with tuneable size and
shape.[152-156] Besides, this type of flower-like nanoparticles can be
obtained with a carbon shell structure using ferrocene as a single reac-
tant. [157,158] Interestingly, by forcing the magnetic interaction of the
cores using a polymeric matrix, flower-like nanoparticles of regular
size can be achieved.[73,159]

Fe30,4 nanoflowers can be also synthesized by thermal decomposi-
tion in organic media. For example, the decomposition of iron(0)

Fig. 10. TEM images of diverse nanoflower-like Fe;04 nanoparticles synthesized under different conditions; a) Thermal decomposition; b-d) Polyol method. Sources: a) adapted/reprinted
with permission from [145], © 2012, by The Royal Society of Chemistry; b) adapted/reprinted with permission from [160], copyright (2017) American Chemical Society; c¢) adapted/
reprinted with permission from[149], © 2017, by Wiley; d) adapted/reprinted with permission from[151], copyright (2004) American Chemical Society.
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pentacarbonyl in 1-octadecene in the presence of oleylamine with a
equimolar ratio of Fe and oleylamine leads to 17 nm aggregates com-
posed by small crystals of around 5 nm.[146] The low concentration of
oleylamine that cannot prevent the agglomeration of the particles points
as the reason for the formation of these Fe304 nanoflowers. Also, the use
of L-arginine monohydrochloride in the decomposition of FeO(OH) in 1-
octadecene leads to 40 nm flower-like aggregates. Ostwald ripening
seems to be responsible for the formation of the aggregates and chloride
ions from L-arginine seem crucial for reaching the flower-like structure.
[147] Moreover, the decomposition of iron(IIl) oleate in a surfactant
mixture of TOPO and oleic acid (5:1 in molar ratio) renders aggregates
of Fe30,4 with a size around 20 nm composed of small 5 nm nanocrystals.
In this scenario, TOPO induces a burst nucleation at 290 °C (synthesis
temperature) leading to a huge number of nuclei that no further grow
so, in order to minimize surface energy, the nuclei tend to aggregate.
[145] Also calixarene molecules have been shown to stabilize intermedi-
ate reaction stages, leading to flower-like structures before magnetite
particles are transformed to octahedrons. [161] Comparing the synthetic
approaches to obtain flower-like nanoparticles, organic medium con-
taining surfactant stabilizers (thermal decomposition of organic precur-
sors) allows to control nucleation events for the formation of the
nanocrystals and thus the size, and the use of surfactants allows
monodispersity. However, it yields hydrophobic particles stabilized by
the surfactants that need further treatments to make them hydrophilic.
On the other hand, polyol-mediated process allows the dissolution of
compounds, including surfactants, of very different nature and polarity
allowing the tuning both the core and particle size of the flower in a
larger range (thus, it is more versatile than thermal decomposition of or-
ganic precursors). In addition, synthesis in poly-alcohols provide a ver-
satile surface chemistry of the nanoflowers, from hydrophobic to
hydrophilic surface, depending on the reagents used in the synthesis.

2.5. Other shapes

In this section those morphologies which cannot be fully identified
with the aforementioned ones are covered (Fig. 11, 12 and 13). The
most studied nanoparticles from this group are the hollow ones. The
synthesis of hollow nanoparticles emerged at the beginning of this
century for their possible applications in catalysis, lithium-ion batteries

and drug delivery. There are different approaches to achieve the
hollowed morphology, including hollow nanorings, nanotubes and
also rods, but all of them are based on the carving of a sacrificial tem-
plate by different mechanisms (Fig. 11).

The most common hollow nanostructures are hollow spheres (Fig.
11). Etching can be carried out using Fe30,4 nanoparticles as template.
Heating magnetite nanoparticles in technical TOPO at 300 °C for 2 h
leads to hollow nanoparticles. It seems that the responsible for this carv-
ing effect is the presence of alkyl phosphonic acid as impurity which co-
ordinates to the Fe ions at the particle surface, dissolves the ions by
forming an iron-phosphonate complex and generates a pseudo-
Kirkendall process where there is an inward diffusion of phosphorous
and oxygen and outward diffusion of Fe ions.[162] Fe30,4 nanoparticles
in a range of 11-24 nm have been successfully etched leading to equiv-
alent size structures with a minimum shell thickness of 3 nm, while par-
ticles smaller than 10 nm are dissolved.

Using core/shell Fe/Fe30,4 nanoparticles as sacrificial template, it is
also possible to fabricate hollow Fe;04 nanoparticles inducing a
Kirkendall reaction by flowing oxygen into the reaction at high temper-
atures (Fig. 11). There are different ways to mix the colloidal Fe/Fe504
suspension with oxygen, i.e. flowing Ar enriched with O, (20%, 20 mL/
min)[163], decomposing trimethylamine N-oxide (CHs)sNO) at 210 °C
[164] or at the expense of oxygen captured inside a sputtering deposi-
tion chamber.[165] It has been observed that the existence of a passiv-
ated layer of Fe30,4 is necessary to start the oxidation due to the
unbalanced interfacial diffusion of oxygen and Fe atoms.[88] Hollowing
mechanism begins once the Fe/Fe30,4 nanoparticles are in contact with
0, because it triggers the outward diffusion of Fe ions to the outer
shell and oxygen ions inward. Fe ions diffuse faster so Fe304 collects at
the metal oxide interface leaving vacancies behind that coalesces into
a single central cavity. With this approach, hollow Fe;0,4 nanoparticles
from 4 to 20 nm with a shell thickness between 3 and 4 nm have been
synthesised controlling the extension of the oxidation process by con-
trolling temperature and time.

Another approach using the same template Fe/Fe30, is to induce a
corrosion by the in situ generation of a sodium molten salt derived
from the presence of sodium oleate.[172] In particular, the decomposi-
tion of iron(II) stearate in the presence of oleic acid with the addition
of 1% of sodium oleate at 380 °C generates 21 nm hollow magnetite

Fig. 11. Scheme of the synthesis routes for the growth of hollow Fe;0,4 nanostructures (nanospheres, nanoframes, nanotubes and nanorings). Synthesis routes from references [162-164,

166-171].
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Fig. 12. Transmission electron (a,b,d) and scanning electron microscopy (c) (TEM/SEM) images of diverse hollow nanostructures and their ideal representations; a) Nanocubes: Adapted/
reprinted with permission from [172]. Copyright (2007) American Chemical Society; b) Nanospheres; Adapted/reprinted with permission from [163]. Copyright (2007) American
Chemical Society; c) Nanotubes; Adapted/reprinted with permission from [170]. Copyright (2008) American Chemical Society; d) Nanorings. Adapted/reprinted with permission from

[170]. Copyright (2008) American Chemical Society.

nanocubes. At high temperatures, sodium oleate decomposes and Na
reacts with O, and H,0 forming Na,O and NaOH,[166,167] which are re-
sponsible for the continuous etching of Fe nanoparticles. It is notewor-
thy that only Fe {110} faces undergo prominent etching maybe due to

absorption or underpotential deposition of Na species on this face.
Changing the amount of oleic acid and the heating rate seems to be cru-
cial to grow hollow Fe3;0,4 with different sizes (15-50 nm) and shapes
(hollow stars).

Fig. 13. Scheme of the synthesis routes for the generation of magnetite nanoworms, nanoellipsoids, nanostars, tetrapods and nanoprisms. Synthesis routes from references[176-181]
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Sacrificial templates can be made of metal oxides different from the
previously described iron ones, leading to hollow bi-phasic metal oxide
nanoparticles as intermediate (Fig. 11). For example, 21 nm Mn304
nanoparticles can be used as seeds for the deposition of y-Fe,03 (Fig.
11). The mixture of Mn30,4 in xylene with a solution of iron(II) perchlo-
rate at 90 °C triggers a galvanic reaction[168] through the xylene-water
interface where iron(ll) cations oxidize to iron(Ill) and manganese(IIl)
species reduces to manganese(Il) which are etched leading to opposite
diffusion of electrons (inward) and manganese(Il) (outward) through
the pin holes created at the interface. At the end of the reaction, all the
Mn30y4 is dissolved and 23 nm <y-Fe,03 remains. Moreover, a more sim-
ple version of this approach using MnO/Mns04 core/shell nanoparticles
as templates and trimethylamine N-oxide instead of water in an all-or-
ganic environment also leads to hollow y-Fe;03 nanoparticles at the
end of the galvanic reaction.[173]

It is worth mentioning that hollowing process can be achieved
with the electron beam of the electron microscope. Poor crystalline
Fe/Fe;04 particles derived from the decomposition of iron(0)
pentacarbonyl in a mixture of TOPO and hexadecylamine leads to hol-
low particles once exposed to the electron beam for 2 minutes. It
seems that the beam creates a quasi-melting state were Fe atoms dif-
fuse and voids coalesce creating a single void to minimize the surface
area.[174] Thus, a poor crystalline structure with lots of defects is the
origin of this carving effect. Moreover, an excess of oleylamine in Fe/
Fe304 nanoparticles also creates hollow particles.[175] In this case,
an increase from 14.5 to 17 nm is achieved in the final particles with
near 4 nm of thickness.

Fe304nanorings and nanotubes can be produced using hematite
(0t-Fe;03) as sacrificial template. The hydrolysis of iron(IIl) chloride in
water with the presence of NH4H,PO,4 and Na,SO4 carried out under hy-
drothermal conditions at 220 °C for several hours leads to a-Fe,03
nanotubes with a height up to 250 nm and diameters up to 170 nm.
[169,170] In a second step, ai-Fe;03 nanotubes can be transformed to
Fe304 by annealing at 360 °C under a mixture of H, and Ar flow. The
mechanism of the nanotube formation can be understood as a coordina-
tion-assisted dissolution process. In the first stage of the reaction phos-
phate groups induce an anisotropic growth along the [001] axis because
of the selective binding to {100} and {110} faces. In the case of sulphate
groups, their affinity to Fe is much weaker than phosphates so do not
play a key role at this step. However, at some point in the reaction, a dis-
solution of a-Fe, 05 tips towards the interior happens to be until hollow
tubes are formed. In this stage, sulphate ions play a key role assisting the
dissolution process. The proposed explanation for the selective dissolu-
tion is that hematite tips have a high surface energy and are easily
attacked by the protons in acidic solution (pH 1.8 is reached due to
the chloride ions from the Fe precursor). By changing the ratio between
phosphate and sulphate ions it is possible to tailor the aspect ratio of the
hematite rods and also the final nanotubes, reaching a nanoring struc-
ture when the concentration of phosphate ions is low. Interestingly,
Fe304 nanorings between 15 and 50 nm can be also obtained in one
step through the hydrolysis of iron(IIl) chloride in ethyleneglycol in
the presence of sodium acetate and 1,6-hexadiamine under
solvothermal conditions at 200 °C.[171]

Apart from hollow morphologies, there are several shapes that
have been grown occasionally under extreme synthetic conditions
(Fig. 13). For example, Fes04nanoworms can be synthesized by
coprecipitation of high-concentrated solutions of iron(Il) and iron
(IIT) salts in water in the presence of dextran (Mw~20 kDa). These
worms can reach a length of 50 nm as a result of the string of 5 nm
spheres. When higher molecular weight dextran was used, multi-
branched structures with a size of 100 nm were grown.[176] An alter-
native to grow Fe304 nanoworms [177] using thermal decomposition
approach can be accomplished decomposing iron(Ill) oleate in 1-
octadecene with a mixture of oleic acid and TOPO (molar ratio~ 1:6)
at 320 °C for 5 hours. The final nanoworms could reach a final length
of 200 nm from the aggregation of spherical particles. This aggregation

was possible because of the presence of weakly-bound TOPO on the
iron oxide surfaces.

Fez04nanostars with 50 nm branches can be accomplished through
the decomposition of iron(III) oleate in eicosane in the presence of oleic
acid with a slow heating rate (2 °C-min™!) and a final reflux temperature
of 350 °C.[178] The key point for achieving a star-shape morphology re-
lies on the oleic acid:Fe ratio of 6, which is extremely high, i.e. around
the upper limit to get nanoparticles. Authors justify this shape due to
an uneven growth of nanoparticles around the nuclei because of the
large concentration of oleic acid adsorbed in the nanoparticle surface.
Interestingly, Fe304ellipsoids can be grown following the same syn-
thetic route but using iron(Ill) myristate instead of iron(IIl) oleate,
which was attributed to the slower decomposition of myristates in com-
parison to other iron carboxylates.

Multribranched FesO4tetrapods with sizes between 3 and 30 nm
in length and a fixed branch diameter around 3-3.5 nm can be grown by
slowly heating iron(0) pentacarbonyl in 1-octadecene in the presence
of a ligand mixture composed by oleic acid, oleylamine and 1,2
hexadecanediol (in a molar ratio 3:3:5) at temperatures below 240 °C.
[179] The length can be modulated with the amount of iron(0)
pentacarbonyl and the number of branches can be modulated with
the amount of oleic acid.

Fe;04nanoprisms can be synthesized through the hydrolysis of iron
(IIT) chloride in the presence of sodium acetate, 1,3-propanediamine
(PDA) and ethyleneglycol (EG).[180] EG/PDA ratio are the key parame-
ters to determine the final size and morphology. Fe;04 nanoprisms with
edges between 50 and 70 nm and thickness with 15-20 nm can be syn-
thesized using a mixture EG/PDA=20 mL/2 mL. However, an EG/PDA
mixture of 35 mL/5 mL leads to Fe30,4 octahedrons. Another synthetic
route using organic solvent lies on the decomposition of iron(III) acetyl-
acetonate in toluene with the presence of oleylamine at 200 °C for 24
hours.[182] The oleylamine controls the anisotropic growth of the
nanocrystals to the final nanoprism shape and the molar ratio between
the oleylamine and the Fe precursor (15:1) leads to 22 nm nanoprisms
in lateral size with 10 nm in thickness.

2.6. Shape-controlled magnetic nanoparticles of other transition metals

This review is centred in the synthetic strategies for shape-con-
trolled magnetic iron oxide nanoparticles, since they have largely dem-
onstrated to have good magnetic features and low toxicity in
bioenvironments.[183] However, the progress on nanotechnology has
allowed the development of nano-tools with broader composition and
outstanding magnetic features that amply surpass those from iron
oxide nanoparticles (i.e. in terms of saturation magnetization, coercive
field, etc.). This improvement is associated not only with the shape of
the nanoparticle, but also in this case due to the presence of other ele-
ments, such us other transition metals (Co, Mn, Zn, Cu, Ni) in the crystal
structure that will suitably modify the spin structure of the
nanomaterial. [184] Recently, the up-above mentioned routes for the
fine shape-controlled synthesis of cubic/polyhedral, elongated, flower-
like, hollowed nanometric structures, etc., were further developed in
order to include other elements apart of Fe while preserving the
shape. Table 1 summarizes the developed synthetic routes for each sys-
tem of nanoparticles (with specific shape and size) and the precursors
used in order to introduce the transition metal elements, along with
other compounds involved in the synthetic reactions. Thus, it is possible
to use organic metal precursor such as acetyacetonate or oleates, includ-
ing Fe>* and other divalent transition metals: Fe?>*, Mn?*, Zn?*, Cu®™,
Ca™, Mg*™. Such M?* /Fe*"—organic precursors can be decomposed at
high temperature allowing the formation of the corresponding mixed
ferrites.[185] For example, the composition of magnetic nanocubes syn-
thesized via thermal decomposition of organic precursors can be stoi-
chiometric adjusted with Co by simply introducing Co(Acac),,Fe
(Acac)s ratio.[186] Lastly, the shape-controlled synthesis of hollow
spheres was achieved via galvanic replacing on 24 nm MnO/Mn304
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Table 1
Colloidal synthetic strategies for other shape-controlled magnetic composites.
Route Composition Shape Dimensions Metal Precursors Reagents involved Reference
(nm)
Thermal decomposition  CoxFe3 404 Nanocubes 15-27 Fe(Acac)s/ Decanoic acid [186]
Co(Acac),
Thermal decomposition ~ MFe;_ 04 (M?>* =Fe?*, Mn?*,  Nanocubes 10-20 M2* /Fe3T-Oleate TOPO, OA [185]
Zn“, Cu2+, Ca“, Mg2+)
Thermal decomposition/ MnO,/FeOx Hollow nanospheres 24 Mn(Oleate),/Fe(Acac); OA, Oleylamine [173]
Galvanic replacement (7-10 inner voids)
Polyol MnFe,04 Flower-like 50 FeCl;/MnCl, PAA [187]
Polyol ZnxFe; 404 Nanorings 13-20 x 100-150 x 70-110  Zn(Acac),/ FeCls EG/H,0/(NH,),CO [188]

nanoparticles. The voids in the structures were successfully achieved
upon the addition of Fe(Acac)s, and water or (CH3)3NO, which both
allow concomitant Mn®>* — Mn?* reduction to form hollow Mn304/
Fe;0, structures and thus, the deposition of Fe?*.[173]

Polyol mediated synthesis has recently demonstrated to likewise
allow the formation of various transition metals ferrites, as it is the
case of 50 nm Mn ferrite flower-like nanoparticles,[187] through
the use of stoichiometric feed ratio of FeCl; and MnCl, leaf-like
nanoplatelets. Interestingly, 13-20 nm ZnyFes_,0,4 leaf-like nanorings
(in thickness) could be synthesized by the combination of the polyol
and calcination methods.[188] This a an indirect method that yields
alkoxide leaf-like nanoplatelets starting from metal sources of differ-
ent nature: Zn(Acac), and FeCls, achieving interestingly homogenous
solid solutions of iron and zinc. After polyol synthesis, a calcination
process provokes the formation Zn ferrite nuclei and inner holes,
achieving the final nanorings. This was attributed to the degradation
of the organic component of the nanoplatelets with formation of CO,,
CO, and H,0. The evolution of such gases would generate in-situ
pores in the nanoplatelets (the bigger pores were thought to grow
via swallowing the smaller ones). Simultaneously, to minimize the
interfacial energy, the as-formed Zn ferrite nuclei diffuse outwards
and aggregate along the edge of the nanoplatelets leading to the
final nanorings.

It must be highlighted that the use of Mn?*, Zn?*, Cu®*, Ca®>*, Mg?*
for biomedical application brings another concern into the picture,
which is the toxicity and the need to avoid metal leaching from the
nanoconjugates.[60] Thus, different coating strategies should be studied
in these cases in order to protect the inorganic core of the magnetic
nanoparticles from the surrounding media, and to increase their stabil-
ity in biological environments. Lastly, cytotoxicity studies in these nano-
systems are mandatory.

3. Ligands

The synthesis of monodisperse size and shape-controlled particles
requires the separation in time of nucleation and growth stages as pre-
viously mentioned and has been addressed in numerous works (Fig.
14).[11,12,22,28,30,53,189-196] Ligands (often called capping agents/
molecules/stabilizers/adsorbates) are used for this purpose because of
their determinant role in all the stages of the synthesis process. Ligands
compile the group of small molecules, surfactants or polymers with
functional groups that coordinate to metal cations through covalent
bonds donating electrons to the electron-poor metal atoms or by any
other chemisorptions process. Some examples of ligands are surfactants
such as carboxylic acids (oleic acid, decanoic acid), amines (oleylamine,
dodecylamine, quaternary ammonium salts) and phosphines (TOP,
TOPO) or polymers (dextran, PVP).

Prior nucleation, ligands are responsible for solubilizing the cations
forming metal complexes or metal hydroxides often referred as “mono-
mers”, “reactive species” or “solute” in the bibliography, stabilizing the
oxidation state of the cation and preventing undesired side reactions.
Some examples regarding the formation of these monomers are i) the
reaction of unstable precursors such as iron(0) pentacarbonyl in the
presence of ligands such as oleic acid, which forms intermediate Fe-
oleic acid complexes, soluble in organic media that delays nucleation
[27], ii) redox reactions among the precursors that will determine
the final product,[198] iii) hydrolysis of iron salts leading to
polyhydroxycations involved in the formation of akaganeite, goethite
or hematite [199] and iv) alkolysis in organic polar media such as the
formation of Fe-alkoxide in glycol that gives rise to the formation
of 3D nanoflowers.[151] The concentration of these monomers in-
creases by the sudden or progressive change of a physicochemical pa-
rameter (mainly temperature or pH) leading to nucleation when its

Fig. 14. Formation mechanism of some anisometric nanoparticles in solution. Adapted with permission from [197]. Copyright (1950) American Chemical Society.
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concentration overcomes the supersaturation limit. At that moment, the
monomer concentration is depleted. (Fig. 14).

Once the nuclei are formed, ligands still have a key role in regulating
the growth of the particles their shape evolution, and stabilizing the
particles in solution. The absence of ligands leads to an uncontrolled
growth driven by the need to diminish the total surface energy as fast
as possible, resulting in large and irregular particles. Ligands dynami-
cally adsorb on certain faces by interaction with the particle surface cat-
ions decreasing their surface energy. The growth rate along this
direction is reduced or inhibited so other growth directions are
favoured. The fact that certain ligands only bind to certain faces depends
on the characteristics of the faces (e.g. outermost atoms, distance
among them and charge) (Fig. 15) and obviously the surfactant func-
tional groups that adsorb or coordinates onto them (functional group,
electron-donor or coordination type).[191]

It should be taken into account that under thermodynamic control
the growth rate of the different faces is exponentially proportional to
its surface energy (Wulff construction model).[200] In the case of mag-
netite nanocrystals, the primary nuclei have octahedral morphology as
(111) are the faces with lower surface energy (Fig. 14 and 15). In gen-
eral cubic symmetry strongly favours isotropic shapes whereas
anisometric shapes are favoured for nuclei presenting monoclinic, or-
thorhombic or hexagonal crystal structures.[167] It is known that for
close packing based cubic crystals, the {100} faces are more energetic
than {110} and {111} so its growth rate is faster. Then, the key factor
to modulate the crystal shape is the ratio of growth rates between
[100], [110] and [111] directions, so for example faster growth of
[111] and [110] direction over [100] leads to the final exposure of the
slowest {100} faces, i.e. cubic shape nanoparticles (Fig. 14).[113] Con-
versely, faster growth of [100] and [110] directions over [111] leads to
octahedral particles.

In general, for non-cubic structures, the faces with the highest en-
ergy are those with smaller reticular interplanar distance,[201-203]
which are perpendicular to the longest axis so, thus, growth occurs
along this direction. As an example, CdSe growth is highly anisotropic
with a high monomer concentration (kinetic control), however, if the
growth rate slows down spherical particles can be achieved.[204] One
strategy for this purpose is the use of specific ligands, which selectively

binds to specific facets modifying their surface energies or the growth
kinetics. The effect of the nature and concentration of the ligands on
the morphology of magnetite nanoparticles are summarized in Tables
2-3.

Apart of the ligand, temperature and monomer concentration are
also important parameters to control the shape of the nanoparticles
(Fig. 16).[205,206]. Low monomer concentration and high tempera-
tures favours thermodynamic regimes that lead to isotropic structures.
However, high flux of monomers and low temperatures are associated
with Kkinetically controlled regimes that favour the growth of
anisometric nanostructures.

3.1. Tips for cubic-shaped nanoparticles

There are two main strategies to grow cubic magnetic nanoparti-
cles. The first one deals with the fixed experimental conditions and
the second one with the use of ligands with specific affinity to (100)
faces. Regarding the former one: i) for thermal decomposition routes:
extremely low heating rates (0.8 °C-min™'), [207] considerably high
concentrations of Fe precursor, above 0.3 M,[102] or considerably
low surfactant/precursor ratio (~2),[ 104] have reported the successful
synthesis of iron oxide nanocubes. ii) for aqueous route (oxidative pre-
cipitation): high heating rates (20-35 °C-min'),[106] high surfac-
tant/Fe ratios (around 5 or 6),[104] short refluxing times (10-20
minutes) or low Fe precursor concentrations (0.044 M), have allowed
obtaining cubic shape. With regard to the second strategy to achieve
cubic shape, the use of sodium oleate, [107] decanoic acid,[105]
TOPO[108] or chloride ions [116] has reported to lower the surface en-
ergy of the growing nuclei and promote their growth along [111] direc-
tion. Lastly, it is remarkable that an excess of sodium oleate has
accounted for the formation of FeO (wiistite), an antiferromagnetic
iron oxide phase, as it will be detailed in Section 4.1.[17,115] The choice
of FeO nanocubes as starting material is a smart strategy, due to their
magnetically noninteracting nature that allows their controlled aniso-
tropic arrangement, its transformation to Fe304 and formation of mag-
netic nano-systems with improved heating efficiency for magnetic
hyperthermia.[208]

Fig. 15. a) Crystal structure of magnetite. Atomic configuration of low-index faces for cubic crystal systems, b) {111}, ¢){110} and d){100}. Adapted with permission from [116]. ©2010, by

The Royal Society of Chemistry.
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Table 2
Role of different ligands as a function of the reaction conditions to reach the target morphology.
Shape [ron precursor Solvent polarity Ligand Comments
Spherical Fe(CO)s/ Organic apolar media Oleic acid Under thermodynamic regime.[85,88]
Fe(oleate)s
Fe(acac)s Oleic acid/oleylamine In coordinated solvents [87]
Fe(acac)s Oleylamine In excess in the reaction [209]
Cubic Fe(oleate)s Organic apolar media Na(K)-Oleate Binds selectively to (100) faces[107]
Fe(oleate)s Chloride, bromide Stabilizes (100) faces[116]
Fe(acac)s Oleic acid High supply of monomers (kinetic regime)[102]
Fe(acac)s Decanoic acid Preference binding to (100) faces. Used as growth inhibitor [105]
Fe(acac)s 4-biphenylcarboxylic Preference binding to (100) faces. Used as growth inhibitor [102]
acid
Fe(acac)s TOPO As impurity, it selectively binds to (100) faces [108]
Octahedra Fe(oleate)s Organic apolar media Quaternary ammonium Generation of TOA cations which selective binding to (111) faces [119]
salts
Fe(acac); Oleylamine In nearly equimolar ratios to precursor, binds selectively to (111)faces
[118]
Fe(acac)s Oleic acid/oleylamine In excess leads to truncated octahedral [210]
1:1 mixture
Elongated FeCl;y Aqueous Sodium (potassium) dihydrogen C-axis growths due to selective binding on (110) & (100) faces
phosphate [46,123]
Fe(Cl04)3 Urea Source of OH ions. Favours c-axis growth (a-Fe,;0s3) [130]
FeSO4 Sodium carbonate C-axis growths due to selective binding on goethite (001) faces [126]
FeSO4 Polyethyleneimine Specific adhesion on lateral planes, inhibits growth [135,136]
FeSO4 Sodium acetate (NaAc) Allows growth on [001] direction [127]
Fe(CO)s Organic apolar media Hexadecylamine/oleic acid Generates water through condensation and hydrolyses Iron(0)-oleic
complex.[211]
Fe(oleate)s TOPO Weak binding to nanoparticles, easy to remove [125]
Fe(CO)s DDAB Strong binding to central region leading to coalescence & growth of Fe
edge particles [131]
Fe(oleate); Oleic acid Induces elongated nanostructures when heating at 150 °C [125]
Disk FeCl3 Aqueous Sodium acetate (NaAc) C-axis growths due to specific adsorption on (0001) hematite faces
Ethanol [141]
Flower Fe(CO)s Organic apolar media Oleylamine At low concentrations cannot prevent agglomeration due to
incomplete capping [146]
FeO(OH) L-arginine monohydrochloride Chloride ions are critical for the formation of flowers [147]
Fe(oleate)s TOPO At high concentrations induces a burst nucleation at 290 °C and

aggregates [145]

3.2. Tips for elongated nanoparticles

For elongated magnetic nanoparticles, the growth mechanism de-
pends on the solvent and/or the precursors involved. In aqueous media,
the growth of elongated particles takes place by the aggregation of pri-
mary particles using an iron oxide or oxohydroxide intermediate that
acts as shape-template. When hematite (o-Fe,03) was used as shape

template, particle size can be controlled with the nature and concen-
tration of the iron(IIl) salt, the concentration of phosphate ions
[46,79] that promotes elongated growth through c-axis achieving ellip-
soidal shapes, the addition of urea[130] and the ageing time, promotes
the formation of smaller or larger a-Fe,O3 nanoparticles respectively.
For example nanoparticles of around 600 nm in length with 80 nm in di-
ameter with aspect ratios up to 10 can be achieved by using high

Table 3
Role of different ligands reach hollow, star, tetrapods, prime and worm nanoparticles.
Shape Iron Solvent polarity Ligand Comments
precursor
Hollow Fe(CO)s Organic apolar media ~ Trimethylamine N-oxide Generates O, from decomposition at high T and induce hollow structures by
Kirkendall effect[164]
Fe(oleate), Sodium oleate Corrosion by Molten salts derived from decomposition at high temperature
[172]
Fe(oleate)s TOPO Coordinates to outer Fe cations, dissolves them and induces an outward flow
of Fe and an inward flow of O and P [162]
FeCl; Aqueous media Ammonium dihydrogen phosphate Induces anisotropic growth of hematite along [001]. Selective binding to (100),
(110) and (012) faces of a-Fe,03 [169]
FeCl3 Sodium sulphate Coordinates and dissolves the edges of the a-Fe,03. Leads to smaller
nanotubes [170]
Star Fe(acac)s Organic apolar media  Oleic acid At high ligand:precursor ratio.[162]
Tetrapod  Fe(CO)s Organic apolar media  Oleic acid-oleylamine-hexadecanediol =~ At T<240 °C acts as templating for anisotropic growth [179]
Prism Fe(acac)s Organic apolar media ~ Dodecylamine At low DDA concentrations, binds selectively to (111) faces.[121]
(DDA)
FeCls Sodium acetate (NaAc) Binds to (001) faces inhibiting the growth [141]
FeCl; Organic polar media 1,3-propanediamine (PDA) Induces octahedral shapes by stabilization of the (111) EG[180]
Ethylenglycol Induces flat shapes together with NaAc under hydrothermal conditions.[180]
Worm Fe(oleate)s Organic apolar media ~ TOPO Excess of TOPO leads to aggregation of small spheres due to weak binding of

TOPO at 320 °C[177]
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Fig. 16. a) Growth regime of nanoparticles with cubic symmetry and final morphology as a function of the different reaction parameters; b) Final morphology of the nanoparticles as a
function of R (ratio between the growth rate along the [100] and the [111] direction). Adapted with permission from [116]. ©2010, by The Royal Society of Chemistry.

concentrations of KH,PO,4 and large ageing times. The addition of urea
leads to the formation of around 300 x 60 nm particles. Smaller hema-
tite particles could be produced by using low amounts of phosphate
ions and short ageing times reaching sizes down to 95 nm with aspect
ratios of 2.

When using goethite (a-FeOOH) as shape template particles
lengths between 60-300 nm and aspect ratios between 6 and 10. The
Fe(II) salt concentration and the carbonate or sodium hydroxide
concentration|[126] are critical for tailoring the final goethite size. In
the case of akaganeite (3-FeOOH) nanoparticles, the concentration
of iron(III) chloride should be higher than 0.1 M [133]. Large elongated
particles up to 500 nm in length and 50 nm in diameter can be synthe-
sized at high temperatures (100 °C) with an ageing time of 24 hours.
[127] Strategies to decrease the nanoparticles size include lowering the
concentration of Fe(IIl) chloride to 0.1 M, [134] the inclusion of poly-
ethylene imine in the reaction,[135,136] the reduction of ageing
times (few hours) and the increase of the pH by adding NH,OH [129].
These strategies allow lower the dimensions to 30 nm in length and 4
nm in width.

In organic media, using iron(IIl) oleate or iron(0) pentacarbonyl, the
mechanism seems to be much more complex. Briefly, the growth pro-
ceed by the classical diffusion mechanism of iron oleic complex mole-
cules to iron oxide nuclei previously formed. Largest particles can be
achieved by increasing the reaction time at 200 °C (if the total decom-
position of the iron oleic complex is avoided), the amount of
hexadecylamine or the volume of the reaction up to 80 % inside the re-
actor (solvothermal approach). Under these conditions, sizes up to 140

nm x 12 nm can be achieved. On the other side, lowering the filling per-
centage of the reaction vessel down to 50%, lowering the amount of
hexadecylamine and the temperature of reaction lead to nanowhiskers
of 20 X 2 nm.

3.3. Tips for disk-shaped nanoparticles

The growth of Fe;0,4 disk shape nanoparticles occurs through reduc-
tion of previously synthesized o-Fe,05 nanoparticles having the target
morphology, which is obtained by hydrolysis of iron(III) chloride in a
mixture of water/ethanol with the presence of sodium acetate. The
growth of hematite takes place by diffusion of amorphous ferric hydrox-
ide onto hematite initial nuclei. The amount of water, the polarity of
the alcohol and the presence of sodium acetate seem to be critical
to control the diameter and thickness of the nanodisks, which can
grow up to 400 x 8 nm. Low aspect ratios (thickness/diameter) are
favoured using low water/ethanol ratios and large amounts of so-
dium acetate.[140] Large aspect ratios are favoured by the opposite
conditions (high water/ethanol ratios and minimum amounts of so-
dium acetate) and using alcohol with high polarity. These conditions
allow reaching structures of 40 nm x 40 nm in size.

3.4. Tips for flower-like nanoparticles
Flower-like nanoparticles produced by the polyol method, grow in

ethylene glycol (EG) by aggregation of primary particles in the presence
of N-methyldiethanolamine (NMDEA).[151] For the growth of large
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aggregate size particles, it is interesting to use a solvent mixture of EG
and NMDEA with a larger proportion of the last one, over stoichiometric
amounts of NaOH, heating in steps instead of continuous heating and
adding water at the beginning of the reaction. The size of the aggregates
can be up to 55 nm formed by cores of 11 nm. However, small aggre-
gates can be achieved with low ageing times, under stoichiometric
amount of NaOH. [35,144]

Flowers synthesized in organic media through thermal decomposi-
tion lead to small aggregates ranging from 17 to 40 nm always com-
posed of small particles of around 5 nm. The smallest aggregate size
was achieved using an equimolar amount of oleylamine with iron
(0) pentacarbonyl [146] while the largest clusters (40 nm) were syn-
thesized with iron(III) oleate using L-arginine monohydrochloride.
[147]

3.5. Tips for other morphologies

Conditions for the production of special morphologies are collected
in table 3. Hollow nanoparticles always require special and, in some
cases, extreme conditions to carve the particle. Some examples are
the generation of nanoframes and hollow spheres. In the case of
nanoframes, a reaction temperature of 380 °C is needed to decompose
sodium oleate and the sodium acts as a Molten salt.[212] In the case of
hollow spheres, inducing Kirkendall effect on oxidizable Fe nanoparti-
cles (Fe/Fes04) by passing/generating O,in situ leads to an inward diffu-
sion of oxygen and outward diffusion of the iron cations generating the
target hollow particles. [163,213]

Nanostars are formed at high oleic acid:Fe ratios, just below the
limit of nucleation because if oleic acid is present in a big excess, it sol-
ubilizes the monomers and inhibits the nucleation of the particles.[178]
Nanoworms are formed by oriented attachment of small primary parti-
cles where the growth by diffusion was not possible because of the
strong binding of certain ligands such as TOPO[177] or the effect of
bulky ligands like dextran,[176] who drives the oriented attachment
to form the nanoworm.

4. Properties
4.1. Structural properties

4.1.1. Nanocrystal structure

The nanocrystal structure is determined by the synthesis route cho-
sen and the growth mechanism. There are different techniques that
allow the examination of the nanocrystal structure. One is the scanning
and transmission electron microscopy (SEM, TEM), including dark field
imaging, high resolution TEM (HRTEM) and related fast Fourier trans-
formation (FFT). They provide local valuable information for the evalu-
ation of the crystallinity, crystal morphology, symmetry and the
orientation of crystallographic axes in anisometric nanoparticles. In ad-
dition, X-ray diffraction (XRD) provides an overall characterisation of
the crystal structure of the sample and statistical measurements.
Other interesting techniques such as Infrared and Raman spectroscopy
for analysing surface bonds, and Mossbauer spectroscopy, especially in-
teresting for Fe compounds, for determining the iron state, will not be
discussed in this review.

Nanocubes are formed by the faster growth of the particles along
the [111] direction over the [100] leading to surfaces composed of
{100} faces in the case of perfect crystals (Fig. 16). This can be corrobo-
rated by the observation of (400) lattice fringes lying parallel to the edge
of the cube by HRTEM.[214] Moreover, it is also common to identify the
(220) and (111) planes, which are disposed in diagonal within the
nanocube.[107,108,116,215] Interestingly, when forming a superlattice,
the (220) and (440) XRD peaks show an enhanced intensity with re-
spect to the bulk ones and the (311) decreases because each nanocube
has a preferred crystal orientation with {110} planes parallel to the sili-
con substrate.[106]

Particular attention deserves the structure of Fe304 nanocrystals
synthesized from Fe(IIl) oleate in eicosane under the presence of oleic
acid and sodium oleate [17,115]. In this particular case and due to the
reducing atmosphere, magnetite is grown from wiistite through
topotaxial growth over shared planes ((200) wustite //(400) maGNETITE
and (220) WUSTITE //(440) MAGNETITE) of both iron oxide phases.
[18,216] Magnetite grows in small subdomains with a high number of
defects and antiphase boundaries. This high amount of dislocations cre-
ated a high number of crystalline boundaries leading to the formation of
a mosaic texture, which explains the limited structural coherence in the
XRD patterns in comparison to those of pure magnetite structure syn-
thesized by thermal decomposition. [217]

In the case of Fe304 nanocubes synthesized by a biogenic route try-
ing to imitate the magnetosomes, their morphology can be described
as pseudo-cubic, with {100} faces but also {110} from dodecahedron
and {111} from octahedron (Fig. 17).[218] It has been observed that
the protein Mms6, located in the magnetosome membrane, modifies
the crystal morphology from octahedral to cuboctahedral through stabi-
lization of the (100) facets because the negatively-charged C-terminal
domain strongly binds to iron and controls magnetite formation.
[219-221]

Contrary to nanocubes, octahedral particles are formed from the
faster growth on [100] direction leading to nanoparticles enclosed on
eight {111} faces, which are the most stable for face-cantered cubic sys-
tems. Typical family planes observed by HRTEM are (111), (11) and
(220).[118] The octahedrons can be slightly truncated exposing {110}
faces and when forming self-assembled monolayers, they are supported
by contacting two vertices of two adjacent nanoparticles in the first row.
During thermal decomposition of iron(0) pentacarbonyl, the addition of
capping ligands such as dodecylamine (DDA) can tune the morphology
of the crystals to diamond-like nanocrystals. In this case the
nanocrystals grow along the [110] zone axis with separation angles of
70° and 90° between the planes, which is a dodecahedron truncated
along the [111] and [100] directions.[121] Triangular nanocrystals are
also achieved, showing (220) planes along the [111] zone axis, which
points that it is a tetrahedron with highly truncated {111} faces.

Solvothermal process reported to directly synthesize magnetite
nanorods using iron(0) pentacarbonyl (Fe(CO)s), oleic acid, and
hexadecylamine exhibiting (222) and (311) planes by HRTEM of
Fe;0,4. The growth takes place along [110] axis (Fig. 17).[135] However,
indirect methodologies lead to elongated structures with different
growth directions (Fig. 17). The reported lattice spacing for magnetite
rods coming from hematite reveals that the long axis is the [001] axis.
[141] Interestingly, akaganeite (3-FeOOH) rods reduced to magnetite
via wet reduction in trioctylamine exhibit an interplanar spacing of
0.20 nm along the long axis which reveals that the growth direction is
the [311].[91] However, when akaganeite nanorods were reduced in
the presence of hydrazine under microwave irradiation the growth di-
rection of the long axis is parallel to the [001] direction.[222] Finally,
magnetite elongated nanoparticles with spindle shape reduced from
goethite, show that the (311) planes forms an angle of 30° with the lon-
gest axis.[110] [90] A typical feature observed for elongated nanoparti-
cles obtained by shape-templating from other oxides is the porosity that
arises from the dehydration during the annealing at high temperatures
to reach the target magnetic iron oxide. This porosity is important as it
increases the surface area of the crystals and the pores act as nucleation
points for the magnetization reversal.[90]

In the case of disks and nanoplatelets, the final magnetite crystal
properties depend on the hematite that acts as template for the final
Fe;04 disks/nanoplatelets. The study of hematite nanoplatelets by
HRTEM and related FFT patterns reveals that the basal plane is the
(001) (Fig. 17).[141] Magnetite disks, obtained after a hydrogen-wet
method, confirm the single crystal nature of their precursor, which
has been shown independent from the reduction method (dry/wet)
[90]. Moreover, the formation of pores randomly distributed has been
observed in the magnetite structure for both types of reductions,
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Fig. 17. From left to right. Magnetite with hexa-octahedral crystal habit elongated along one of the [111] direction from magnetotactic bacterium. Orientation of longest dimension of the
elongated nanoparticles as a function of the precursors and crystal structure of hexagonal nanorings.

which is associated to the formation of tunnels by the removal of oxy-
gen. Magnetite is formed in the surrounding areas parallel to the tunnel
generation.[223] The nanodisks obtained by this route possess (220)
lateral planes and (111) planes in the basal surface.[224] It is notewor-
thy that the alignment of the nanodisks produces modification in the
relative intensities of the X-ray diffraction pattern, in comparison with
the standard Fe30,4, showing enhanced intensities for (111) and (222)
peaks, whereas the intensities of (220), (400) and (440) were re-
duced.[140] Fe304/v-Fe,03 nanoplatelets obtained by solvothermal
method and a post-reduction step in hydrazine, renders basal planes
corresponding to (111) surfaces of a spinel-structured iron oxide hin-
dering the growth along the [111] direction. [225] Besides, the flatten-
ing of the nanoplatelets was assigned to the (220) and (311) planes of
y-Fe;03.[53] The authors claimed that in the Fe-terminated (111) sur-
faces of the nanoparticles, the absorption of PVP can take place due to
its strongest polarity as it exposes alternated octahedral coordinated
Fe™ and 0% layers so Fe" ions can interact with other functional
groups. The adhesion of PVP to the {111} faces reduces the growth
rate along the [111] direction.

Hollow iron oxide spheres obtained by Kirkendall effect of initial
Fe/Fe oxide core/shell particles are polycrystalline with no preferential
orientation of the individuals. [213] However, hollow nanoframes ob-
tained by “molten salt corrosion” are oriented crystal aggregates and
dissolution proceed in a certain direction, causing prominent etching
only in {110} faces.[172] However, a different behaviour arises from
the use of sacrificial templates of iron oxides. In the case of hematite
nanorings synthesized by Ostwald ripening and subsequent oriented
dissolution, there is a preferential dissolution of the tip of the (100)
plane (highest concentration of exposed Fe>™ ions) and then on (001)
planes among the normal low index planes (Fig. 17).[226] Usually, cer-
tain ions are used in order to form binuclear, bidentate complexes with
iron, adhering on (110) and (100) surfaces and preventing the iron
atoms to detach from the surfaces.

Fes04nanorings obtained after dry reduction in a furnace are single-
crystal and present two crystallographic orientations ([111] and [112])
from respective lattice spacing of 0.48 and 0.29 nm in their basal plane.
After the phase transformation, [001] a-Fe,03 crystallographic direc-
tion transforms to [111] and [112] Fe304 direction, being the latter
one observed directly by electron microscopy for the first time
(Fig. 17).[170] Absorption spectroscopy on HRTEM revealed also that
the Fe atoms are homogeneously distributed without change of valence.
For the case of hollow rods, obtained from the direct transformation of
hematite, a perfect single crystal structure is obtained. The reported lat-
tice spacing for hematite rods is 0.253 nm, which corresponds to the
(110) planes. The selected area diffraction pattern and HRTEM analyses

have revealed that nanorods grow along the [001] direction. After the
phase transformation, [001] and [110] crystal directions of a-Fe,03
leads to [111] and [311] in magnetite. Lastly, hollow structures obtained
through galvanic replacement reactions in metal oxide nanocrystals
showed that, in the case of Mn304 square prisms, whose top and side
surfaces were enclosed by (001) and (100) facets, respectively, where
transformed to y-Fe,Osnanocages with a hollow interior and holes
and crystalline structure with highly ordered continuous lattice fringes
in their shell.

Nanoflowers structure critically depends on the synthesis process
used that determines for example the degree of contact between cores
within a particle. In fact, if the continuity of the crystal orientation is en-
sured along the particle, magnetic ordering across the interfaces is
favoured.[149] For one-step surfactant assisted hydrothermal process,
the reported HRTEM analysis reveals that each particle behaves as a sin-
gle crystal with spinel structure and similar crystalline orientation.
[227,228] However, high temperature organic precursor decomposition
with a second injection of TOPO and hexane produces nanoflowers
composed of many small (5 nm) iron oxide nanocrystals, causing a
ring dot pattern of the HRTEM Fast Fourier Transformation (FFT) typical
of polycrystals.[145] Polyol process in the presence of NMDEA allows
obtaining nanoflowers composed of large cores (approximately 11
nm). This was clearly indicated by the FFT of monocrystalline
nanoflowers, showing misalignments from 1 to 3° between the cores
and defect holes, possibly containing traces of solvents used for the syn-
thesis. Nevertheless, the authors claimed that 30% of the nanoflowers
are still polycrystalline.[35] Lastly, self-assembled 3D flowerlike iron
oxide nanostructures formed by the assembly of microspheres, caused
aring dot pattern of the FFT.[229]

4.1.2. Nanocrystal stability and dispersability

Most of the applications of magnetic nanoparticles, especially for in
vivo biomedical applications, involves the use of magnetic nanoparticles
in solution forming long-term stable colloids.[82] In fact, one of the lim-
iting issues precluding the use of these nanoparticles in clinic is the dif-
ficulty of forming stable colloids for nanoparticle sizes close or above the
superparamagnetic regime[48] and the fact that its magnetic behaviour
depends on the colloidal properties. Therefore, the size of the magnetic
nanoparticles in solution overtime should be systematically studied. In
the particular case of the up-above mentioned shape-controlled iron
oxide magnetic nanoparticles, just in few systems, the colloidal proper-
ties are studied, and if so, most cases just report data in aqueous media.
In Table 4, the hydrodynamic sizes found for iron oxide shape-con-
trolled nanoparticles synthesized through different routes and stabi-
lized in aqueous media via diverse ligands/coatings are summarized.
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Table 4

Hydrodynamic sizes found for iron oxide shape-controlled nanoparticles synthesized through different routes and stabilized in aqueous media via diverse ligands/coatings. (DMSA:

Dimercaptosuccinic acid, PMAO: poly-(maleic anhydride alt-1-octadecene)).

Shape TEM Size (nm) Synthesis route Ligand/Coating Hydrodynamic Size (nm) Ref.
Cubic 12 Thermal decomposition PMAO 17 [230]
19 37
25 40
38 61
Octahedra 50 Thermal decomposition DMSA 255 [145]
Rod 30 Hydrothermal Polyethyleneimine 71 [116]
40 76
50 86
60 95
70 105
Disk 225x26 nm Solvothermal CTAB 180 [126]
Wet-reduction
Flower 19 Polyol Citrate 27 [130]
24 37
28 38
41 Oxidative Precipitation Dextran 192 [141]
47 Polyol Dextran 51
110 Citrate 158
172 Post synthesis - Emulsion Solvent Polystyrene 250
Evaporation
40 Thermal decomposition DMSA 95 [145]
Bead 108 Post synthesis - Polymer coating PMAO 159 [138]
239 Polymer coating PMAO 378
370 552

The hydrodynamic size is usually bigger than the size analysed by
TEM, accounting for the presence of the coating and the hydration
layer on the nanoparticle surface. However in some cases, i.e. 50 nm oc-
tahedra, [145] we can find huge differences due to the formation of ag-
gregates. Depending on the size, shape and composition of the iron
oxide cores and due to the aggregation, nanoparticles may show a ferri-
magnetic nature at room temperature,[231] as it is the case of the
highlighted system, having a certain coercivity. In these cases, special
emphasis in the study of the colloidal properties of the magnetic nano-
particles with ligands that provide enough electrostatic/steric hin-
drance is recommended.

Dimercaptosuccinic acid (DMSA, ligand attached to the surface of
iron oxide after ligand exchange with oleic acid) is a small molecule
that probably does not provide enough repulsive forces for 50 nm mag-
netite with such magnetic features. Nevertheless, DMSA could render
stability to 40 nm flower-like nanoparticles (due to their smaller coer-
cive field in comparison with the octahedra) and it has demonstrated
to be effective for iron oxide nanoparticles with smaller size providing
NCs with negative surface charges at physiological pH and allowing a
wide range of pharmaceutical applications, especially for targeted drug
delivery, biomedical imaging, biosensing, hyperthermia, or nano-ther-
mometry, improving either the efficiency of the therapy, or the detection
limit of the technique.[232] On the other hand, poly-(maleic anhydride
alt-1-octadecene) are polymers more suitable for magnetic nanoparti-
cles above 30 nm. It must be highlighted the importance of the amphi-
philic polymers, whose alkyl intercalate with the chains of the
surfactants bound at the nanoparticle hydrophobic shells, at the surface,
i.e. to oleic acid, and the anhydride rings hydrolyze and ensure colloidal
stability by means of negative electrostatic repulsions.[233] As observed
in Table 4, this polymer allows the stabilization of nanocubes with sizes
up to 38 nm (therefore already above the superparamagnetic regime)
[230] and nanobeads with a broad range of sizes (108-370 nm). [138]

The colloidal properties of nanorods were studied by means of the
hydrodynamic size (although Dynamic Light Scattering is a technique
that can be used to determine the size distribution profile of spherical
nanoparticles). The nanorods were coated with polyethyleneimine
(PEI), a polymer with a repeating unit composed of the amine group
and two carbon aliphatic CH,CH, spacer, and therefore providing posi-
tive surface charge to the nanorods. This polymer is able to stabilize
nanorods with longest axis up to 70 nm. [116]

Citrate groups have also demonstrated to provide electrostatic forces
strong enough to allow the stabilization of flower-like nanoparticles
with a broad range of sizes (19-110 nm), [130][141] despite the small
size of citric acid molecule. From the practical use of the flower-like
nanoparticles in biomedicine, it was also reported their coating (mean
TEM size 47 nm) with dextran. [141] This polysaccharide polymer
binds the nanoflower through the OH functionality contained in each
sugar unit on the polymer. An important issue with these coatings is
that heat treatment can cause the polymer to dissociate from the iron
oxide, which could have implications on the long-term colloidal stabil-
ity as well as the resistance of the iron oxide nanoflowers against the
slightly acidic lysosomal compartment. Researchers have been able to
work around this problem via crosslinking the polysaccharide chains
through crosslinkers such as epichlorohydrin.[234] Other strategy to
stabilize flower-like nanoparticles is to embed them in polystyrene
beads of 172 nm. [141] From the biomedical application of magnetic
nanoparticle’s point of view, polystyrene has advantages, as it has re-
ported to provide colloidal stability, but also to follow pathways to
pass epithelial monolayers by opening the tight junctions, thus offering
a new possibility for drug delivery across the blood-brain barrier.[235]

Lastly, hexadecyltrimethylammonium bromide (CTAB) has allowed
the stabilization of 225x26 nm nanodisks in aqueous media. Although
this surfactant is able to form micelles in aqueous solutions and stabilize
nanoparticles of big size, it is not a biocompatible coating agent and
therefore, for biomedical applications it is not suitable.

In conclusion, we have highlighted the importance of colloidal sta-
bility of magnetic nanoparticles and brought up some of the ligands/
polymers used to stabilize them in water, having different sizes and
shapes. There is plenty of room to improve its dispersibility considering
the important differences of anisometric nanoparticles in terms of sur-
face area. This is an issue of the utmost importance, as both the cell up-
take and transport across intestinal cells revealed remarkable
differences as a function of the shape.[236] Deepening in this issue
could have great impact, for instance, on the delivery of drugs with in-
herent poor oral bioavailability.

4.2. Magnetic properties

In general, Fe;04nanocubes synthesized in organic media by ther-
mal decomposition exhibit saturation magnetisation values (Ms) at
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room temperature close to the bulk ones Ms= 92 emu-g~! for sizes
larger than 13 nm, being Msy, ;.= 96 emu/g) (Fig. 18, Table 5).[207] It
has been observed that nanocubes saturate at much lower field (0.2 T)
than spheres (1 T).[107] In the zero field cool/ field cool curves (ZFC/
FC), it is also observed an important difference in the blocking temper-
ature (Tg), being larger for spheres (235 K) than for nanocubes (190 K)
and corroborated by Mdéssbauer spectroscopy. Surface anisotropy, en-
hanced for spheres, seems to be responsible for the different magnetic
behaviour.[114] Apart of the shape, size is the other important factor
governing the magnetic behaviour of these cubes. Thus, 100 nm
nanocubes exhibit coercivities around 110 and 600 Oe at room temper-
ature and 5 K respectively.[104,214] Contrary to expected, coercivity
(Hc) increases for sizes larger than the monodomain. This is due to
the formation of chain superstructures where the coercivity is propor-
tional to the length of the chain and inverse to the separation between
cube faces.[237,238] Moreover, Verwey transition (see below) is ob-
served in the ZFC/FC curves for 16 nm Fe304 nanocubes prepared by
thermal decomposition in organic media [104] but no for nanocubes
of similar size (20 nm) synthesized in water using precipitation in alka-
line media, in spite of being both of them pure magnetite as demon-
strated by Mossbauer spectroscopy.[99] However, magnetic properties
in terms of Ms and Hc¢ do not differ significantly for these two samples
(Table 5).

The magnetic properties of elongated Fe3;0, or +y-
Fe,0snanoparticles present special features respect to their spherical
counterparts mainly due to the enhancement of the effective anisotropy
as the shape term appears in addition to the magnetocrystalline one.
This means that only two possible directions (along the largest dimen-
sion) are possible for the magnetic moment. In theory, it leads to an in-
crease of the blocking temperature and coercivity of the particles.
However, there are other factors such as the surface disorder or the ex-
istence of crystal defects or pores, determined by the synthesis ap-
proach and/or reduction strategy that should be taken into account.
Magnetic properties of these anisometric particles and spheres with
equivalent volumes, either Fe304 or y-Fe,;03, have been compared
(Table 6). For example, for Fe;04 elongated nanoparticles synthesized
in organic media by solvothermal route exhibit the Verwey transition
(Ty) around 120 K, even for rods with small dimensions down to 41x7
nm (volume equivalent to a spherical particle of around 14 nm).
[132,241] The Verwey transition marks a structure change from cubic
(above Ty) to monoclinic (below Ty) having a clear impact in their

Table 5
Magnetic properties of different iron oxide nanoparticles with cubic shape.

Author/year/reference Length Ms gt Hc gy (Oe) Hcsi (Oe)
(nm) (emu-g™)
Guardia/2010 [207] 13 e 0 400
45 - 50 200
180 0 - 50 50
Yang&Ogawa/2008 6.5 39 - 190
[215] 15 80 500
30 83 100 790
Kovalenko/2007/[107] 7 29 [0 —
Kim&Hyeon/2009 [102] 25 = --—-—- 20 e
50 0 - 75
79 90 0
00 0 - 10 -
150 - 100 -
170 - 13 -
Gao/2010 [108] 12 603 e
Moya/2015[104] 16 82 9 320
50 90 82 327
104 91 94 598
Pardo/2015[214] 7/ — 333
48 e e 460
94 e 609
Andres-Verges/2008[99] 30 83 1 —
33 83 <o J—
45 87 -0 J—
76 92 106 -
Vereda/2013 [239] 54 82 80 -
Nishio/2007 [240] 31 82 e e
40 8 e e
46 <[
102 92 e e

physical properties.[242] For spherical particles smaller than 30 nm is
not common to observe the Verwey transition because of the surface
spin canting, defects or lack of stoichiometry.[85,243] The presence of
the Verwey transition is a clear sign of highly crystalline and stoichio-
metric magnetite.

A proof of their high crystallinity are the high Ms values (84-87 emu/
g) for rods with dimensions larger than 40x7 nm,[132] which are close
to the bulk one. It is also remarkable that blocking temperatures have
not been found below 300 K, due to the effect of the dipolar interactions,
which leads to a negligible coercivity at room temperature (0-50 Oe).
[211] Interestingly, Fes04 rods (72x8 nm) grown epitaxially on SrTiO3

Fig. 18. Magnetic properties at room temperature of magnetite nanoparticles with different morphologies; a) Saturation magnetisation (Ms), and b) Coercive field (H) as a function of the

particle size. Dot lines represents Ms and Hc of bulk magnetite taken from [249].
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substrate exhibit biaxial magnetic anisotropy with differences of one
order of magnitude between the hard and the easy axis.[241] Moreover,
the Ty increased for the same rods when grew epitaxially on a substrate
(120 K) than without substrate being the presence of antiphase bound-
aries the main responsible for the Ty shift to lower temperatures.[248]
Different behaviour was observed for ultrathin nanorods (called
nanowhiskers) of 20x2 nm grown by hydrolysis of iron(III) oleate in
the presence of oleylamine at 150 °C. Magnetization loops at room tem-
perature show a paramagnetic component due to the high surface-to-
volume ratio (around 2) and low crystallinity.[245]

When the synthetic route chosen to get Fe30,4 is via goethite or
akaganeite, the nanostructures are not as well crystallized as their
equivalents grown from hematite or by solvothermal method, and pres-
ent pores. In general, Mg values range from 20 to 60 emu/g due to their
surface spin disorder .[91,129,135,136,222,246,247] The smallest rods
where the Verwey transition can be observed are 40x6 nm (equivalent
to 13 nm spherical particles).[135] Blocking temperatures of 80 and 110
K were measured for 30x4 nm and 40x6 nm, respectively[135] but for
longer rods (400 x 40 nm), the ZFC and FC do not converge showing fer-
romagnetism at room temperature and coercivity values up to 350 Oe at
room temperature due to the large diameter of the nanostructures.[136]
Magnetite nanobelts obtained by reduction of a-FeOOH of 50 nm in di-
ameter and several pm of length exhibit a high Mg at 300 K (81emu/g)
and a coercivity of 170 Oe.[124]

Nanoplates/disks/rings with diameters between 3-15 times larger
than their thickness are reported to exhibit magnetic vortex structures
(Fig. 19). In this configuration, the majority of the spins align circularly
in plane forming a flux closure while the ones located at the centre are
aligned out of plane leading to weak interacting structures without any
stray field and with coercivities and remanent magnetizations close to
zero being ideal for theranostic applications. The stabilization of this
vortex depends on the diameter, the thickness and also the extension
of the inner cavity in the case of nanorings.[140] Once an external
field is applied, the magnetic vortex state can be transformed into

Table 6
Magnetic properties of different iron oxide nanoparticles with elongated shape. Spherical
size means the diameter of a sphere with the same volume than the elongated particle.

Reference Length Width Aspect Spherical Ms,¢ Hc
(nm) (nm) ratio Size(nm) (emu/g) (Oe)
R. Das/2016 [132] 41 7 5.9 144 86 0
65 6 10.8 15.2 84 0
56 10 5.6 203 87 0
H.Sun/2012 [211] 63 6.5 9.7 15.8 20 46.5
Si/2014[244] 58 8 7.3 17.7 62.15  -—---—-
250 64 3.9 115 6215  -—--—-
Macher/2014[245] 20 2 10.0 5 25 0
Chandra/2017[241] 72 8 9.0 19 86 412
72 8 9.0 19 86 412
Bomati/2008[129] 40 7 57 14.3 25 -
65 10 6.5 21.3 25 -
100 18 5.6 36 40 -
140 20 7.0 430 50 650
YJ. Chen/2009 [246] 1000 80 125 202 59 266
Wang/2010[247] 200 50 4.0 90 68
Milosevic/2011 38 12 3.2 20 18 55
[222]
Mohapatra/2015 30 4 7.5 8.9 50 0
[135] 40 6 6.7 129 54 0
50 8 6.3 16.9 58 0
60 10 6.0 20.8 63 0
70 12 5.8 24.7 66 0
Geng/2016[91] 50 10 5.0 19 78 38
400 40 10.0 98 334
Lentijo/2017[136] 212 46 4.6 87 83 789
(10K)
21 5.7 3.7 10 69 497
17 5 34 8.6 15 511
H. Gavilan/2017[90] 183 33 55 66 60 0
183 33 5.5 66 82 200

another state, which depends on the morphology of the nanostructure.
In the case of nanorings the hysteresis loop consists in a two-step pro-
cess involving onion-vortex transition and vortex-reverse onion state
(Fig. 19) [140,250]. In nanodisks, the evolution is more complex. At
zero field from a saturate state, there is a transition to c-state were the
vortex core is located close to the edge of the particle. An increase of H
leads to a shift of the vortex from the edge to the centre forming a vortex
state in the particles. A further increase leads to a shift of the vortex to
the opposite edge and finally the vortex disappears once the nanodisk
is saturated. It is noteworthy that the vortex configuration is a stable
state in nanorings rather than in nanodisks. In the case of the
nanoplates/disks, in spite of their large size, the saturation magnetiza-
tion is below the bulk one. Small nanoplates of 35 nm in diameter and
aspect ratio 3 (equivalent diameter=27 nm) have a Ms of 71 emu/g.
[143] On the contrary, large nanodisks with a diameter of 225 nm and
an aspect ratio of 14, displays a Ms of 85 emu/g, much closer to the
bulk one.[140] Differences in the Mg are given again by the structure
of the oxide or oxohydroxide precursor and the further annealing
which gives the final Fe30,4 phase. In all cases and spite of their magnetic
configuration, plates and disks exhibit high values of Hc at room tem-
perature. Coercivity ranges from 110 to 267 Oe for the 35 nm nanoplates
and 225 nm nanodisks, following a linear trend with the size (Table 7).
[90,140,143]

Superferrimagnetism is the main property ascribed to Fe304/7y-
Fe,03nanoflowers, which makes them ideal for biomedical applica-
tions, especially as hyperthermia and MRI contrast agents.
Superferrimagnetism arises from the exchange interaction between

Fig. 19. Magnetic stated during switching when field is parallel to, a) nanorings, reprinted
with permission from [250], ©2012, by AIP Publishing; b) nanodisks. Cartoons are
schematic diagrams of the domain structures. Reprinted with permission from [140],
©2015, by Wiley.
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Table 7

Magnetic properties of different iron oxide nanoparticles with disk/plate like morphology.
Author/year/eference D (nm) t (nm) Aspect ratio Spherical size (nm) Msgr (emu/g) Hcgr (Oe) Hcsk (Oe)
Lu/2009 [143] 35 115 3.04 27 71 110 e
Gavilan/2017[90] 140 22 6.36 86 81 188 628
Yang/2015[140] 225 16 14.06 125 85 267 490

the cores that are in close contact within the particle. The remanent
magnetization of these nanoflowers is weaker compared to single core
particles with similar cluster size.[251] The other characteristic is that
their saturation magnetization values are close to the bulk ones given
by the use of high temperature synthesis routes that reduce the pres-
ence of spin disorders and canting. In all cases, the nanoflowers exhibit
residual coercivities [252] or are superparamagnetic as a consequence
of the super exchange interaction between the core within the particle
and they have a very high magnetic moment per particle. Both charac-
teristics enable the production of stable suspensions of nanoflowers
compatible with high magnetic response.

Magnetic properties of hollow iron oxide nanoparticles depend in
a great extension of the hollowing procedure. For example, Fe;04 nano-
particles, with at least 10 nm in size, etched with TOPO technical grade
at 300 °C, have experienced a dramatic change of their magnetic prop-
erties from superparamagnetic to paramagnetic. This change is due to
the inward diffusion of P atoms on the nanoparticle leading to amor-
phous iron oxide. Another interesting feature is the loss of Mg from 50
to 3 emu/g.[162] For those iron oxide particles hollowed by using
Kirkendall effect-based techniques using Fe nanoparticles/clusters as
templates, the magnetic properties dramatically change, not only be-
cause of the phase change (from Fe to Fe304 to y-Fe,05) but also for
the promotion of surface spin canting and the change to a polycrystal-
line nature of the particles.[165] Thus, saturation magnetization drops
from 80 to 47.9 emu/g from solid 13 nm Fe/Fe304 nanoparticles to
their equivalent 16 nm hollow Fes0, ones after oxidation with
trimethylamine N-oxide. Moreover, these hollow structures were not
able to saturate under a field of 1.5 T.[164]

An evidence of how important is the reduction method is shown by
the different magnetic properties of Fe304 needles obtained from o~
FeOOH nanoparticles of 183x33 nm subjected to both dry (treatment
at high temperatures under hydrogen/argon gas) and wet (treatment
at high temperature in organic media in the presence of oleic acid) re-
duction treatments. In the case of the needles obtained by wet reduc-
tion, the Ms measured at 300 and 10 K were much lower (60 and 70
emu/g respectively) than the values obtained for the needles reduced
by the dry method (82 and 90 emu/g).[90] Interestingly, for the sample
obtained by wet reduction the hysteresis loop presents a wasp-waisted
shape with a negligible coercivity (observed at low sweeping field rate)
due to the mixture of single and multidomain remanence states.[253] In
the case of the needles obtained by dry reduction there are no sights of
such behaviour probably due to the less pronounced defects and pores
within the reduced needles.

In general, it can be concluded that magnetic properties of magnetite
and maghemite nanoparticles are strongly dependent on not only the
nanoparticle size and shape but also on the synthesis route and, in par-
ticular, on the reduction conditions if other iron oxides/oxihydroxides
have been chosen as shape templates. Thus, in the case of elongated
nanoparticles with sizes below 150 nm in length, they show coercivity
values at room temperature similar to other morphologies probably
due to incoherent magnetisation reversal process. On the other hand,
the low coercivities and remanent magnetization values observed for
nanoflowers are due to their superferrimagnetic behavior (Fig. 18). In
theory, nanorings/disks exhibit lower coercivity due to their magnetic
vortex structure but the reality shows that there are other factors such
as the internal structure, defects and pores that also accounts for the
final magnetic properties. Low coercivities are interesting to preserve
the reversible magnetic behaviour and minimize the formation of

aggregates after applying a magnetic field. Nanocubes exhibit higher
Ms values than other morphologies, closer to the bulk value (96 emu/
g), which is a key parameter to obtain high MRI relaxivities and the
heating capabilities under an alternating magnetic field.[184]

The interpretation of the magnetic properties of colloidal suspen-
sions of magnetic nanoparticles is complex, as well as their correlation
to the nanoparticle structure, shape, defects etc... That is why engineer-
ing magnetic nanoparticles with special properties for a specific applica-
tion in biomedicine is still challenging.

4.3. Relevant properties for nanomedicine

4.3.1. Toxicity

Magnetite and maghemite nanoparticles have been proposed for
biomedical applications and their main advantage over other magnetic
compounds is their low toxicity. This is a consequence of the existence
in the body of metabolic pathways able to deal with iron atoms.[254]
Specialized proteins such as ferritin are able to store iron released
from the nanoparticles during their degradation process in a safe form
that allows a recycling process of iron.[255,256] In fact, iron oxide and
oxyhydroxide nanoparticles are currently being used as iron supple-
ments. In addition, the Food and Drug Administration (FDA) of the
USA has also approved iron oxides as contrast agents for magnetic res-
onance imaging (MRI).[257]

Generally, most of the studies evaluating the toxicity of iron oxide
magnetic nanoparticles reinforce the idea of their low cytotoxicity, in
spite of the difficulty comparing toxicity studies from the literature
due to the lack of standardization (several iron concentrations, cell
lines and assays are randomly used). The cytotoxic effects revealed for
magnetite and maghemite, if any, are usually negligible or limited to ex-
treme conditions such as very high doses (> 0.5 mg Fe/ml) or long expo-
sure times (> 120 h).[258] However, in most cases only the decrease in
cell viability is evaluated and other potential toxic effects (genetic or
carcinogenic among others) are not generally studied. Likewise, no
signs of additional toxicity have been found for the different anisometric
nanoparticles in agreement with the observations reported for spherical
ones.

In the case of 19 nm nanocubes, cytotoxicity using the Trypan Blue
test has been tested in human adenocarcinoma cells (KB cells). Cell via-
bility was decreased to 70 % when the cells were incubated with poly-
(maleic anhydride alt-1-octadecene) coated nanoparticles (1 mg/mL,
24 h).[230] The same group studied the cell viability by the Alamar
Blue assay with three malignant cell lines, SKOV3 (ovarian cancer),
PC3 (prostate cancer), and A431 (epidermoid cancer) using 20 nm
nanocubes, indicating the low toxicity of this material.[74] The degrada-
tion of similar sized nanocubes has also been followed in vitro (in SKOV3
ovarian and PC3 prostatic carcinoma cells) and in vivo in a murine
model observing the formation of ferritin and proving the activation of
iron metabolism routes to deal with iron coming from the nanoparticles
degradation.[259] Calcein staining and Magic Red caspase detection kits
were used in a human lung carcinoma cell line (A549) and cytotoxicity
has just been observed in the case of hyperthermia application using
nanocubes forming multi-core structures.[260] 10 nm nanocubes have
been tested for in vitro toxicity using a L929 mouse cell line and the
Alamar Blue assay and no toxicity was found with concentrations
below 0.1mg Fe/mL. [261] Toxicity studies of these nanocubes in rats
have also shown high biocompatibility as the nanoparticles were effi-
ciently removed from the body by renal excretion.[261]
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In general elongated iron oxide particles with high aspect ratio are
expected to be more toxic than those with lower ones. Few examples
can be found in the literature suggesting higher cytotoxicity effects of
elongated nanoparticles in comparison with spherical ones associated
with cellular damage, in a similar way as the performed by uric acid
crystal deposition.[262]. In particular, nanorods have shown a higher
degree of membrane damage than spherical ones in mouse macrophage
cells.[190] However, these results have to be cautiously analysed as, in
addition to the different shape, particles also presented very different
size and surface area, also it was reported that cell viability decreased
both for nanorods and nanospheres. It is also worth mentioning that
very high doses of other elongated formulations based on iron
oxyhydroxides (akaganeite) nanoparticles as part of their composition
are well tolerated in animal models.[263] On the contrary, there are ex-
amples of iron oxide nanorods with high aspect ratio (an average length
of 10 um) whose cytotoxicity has been studied showing that, even
though the nanorods are internalized and located in the perinuclear
region, cell viability remained at 100% level within the experimental
conditions (NIH/3T3 fibroblast cells using the MTT assay with iron con-
centrations between 10 pM (5.5-10"* mg Fe/mL) and 10 mM (0.55 mg
Fe/mL) after 24 h incubation time).[264] PEGylated maghemite
(7y-Fe;03) nanotubes and silica coated elongated nanoparticles have
also revealed excellent biocompatibility properties assessed by MTT
and flow cytometry (Fig. 20).[265,266]

Cytotoxicity of citrate-coated multicore maghemite nanoflowers
has been checked in MCF-7 cells incubated during 30 min with concen-
trations between 0.01 mg Fe/mL and 0.28 mg Fe/mL by the Alamar Blue
assay showing no significant differences with the control cells.[144]
A more complete cytotoxicity assay has been performed using
U87n human glioma cell lines, assessing the internalization of the
nanoflowers (29 nm particle size) by confocal microscopy, TEM, fluores-
cence and bioluminesce imaging and flow cytometry. This study also
corroborated the low toxicity of the nanoflowers.[267] Multicore
nanoflowers of around 140 nm have been assessed in two cell lines
(Hep G2 and Caco-2) by the MTT assay and have proved that cell viabil-
ity is only reduced at the highest dose tested (0.64 mg Fe/mL).[268] This
material has also been administered to a Xenopus Laevis animal model,
where a strong dependence on the particle coating and the accumula-
tion in the animal has been found. Although the particles were not lethal
in the evaluated doses, several malformations were observed in the em-
bryos. This work highlights the necessity of using simple animal models
to assess nanoparticles toxicity that may not be found using just cell
cultures.

Cytotoxicity had been assessed for hollow nanospheres of 13 nm
and OVCARS8 and OVCARS-ADR cells through MTT studies and no con-
siderable toxicity was found for 72 h, with Fe concentrations up to
0.89 mg Fe/mL.[269] In addition, hollow nanospheres have been admin-
istered to a mouse model confirming the lack of toxicity signs one
month after the injection.[171] In the case of tripod particles,

cytotoxicity has been compared with spherical particles and it has
been found to be low by the MTT assay in Hepa 1-6 and HeLa cells at dif-
ferent time points up to 24 h and using concentrations between 0.022
and 0.35 mg Fe/ mL.[270]

In general, it can be concluded that other parameters such as the
concentration, the nature of the nanoparticles coating or the incubation
time have stronger effects on the nanoparticles citotoxicity than their
shape.[271] Therefore, the effect of the shape on the nanoparticles tox-
icity is relatively limited and maybe just slightly relevant in the case of
high aspect ratio conditions. Besides, contradictory results are found in
the literature regarding the influence of the shape and aspect ratio of
nanomaterials on their cellular uptake.[272] Inconsistencies may be
due to the general lack of standardization in the methodology assessing
the toxicity, leading to comparison of data coming from different exper-
imental setups.

4.3.2. Cell uptake and biodistribution

Geometry has an important effect on two key parameters with
strong impact on the success of biomedical applications, the particles
cellular uptake and their biodistribution. [58]

In general, it appears that higher aspect-ratio particles have a higher
surface area that increases the cell membrane interactions and therefore
the particles internalization.[265] In the case of nanoflowers, opposed
results can be found in the literature. Some authors have shown that
when comparing with nanoflowers, nanocubes or nanospheres,
nanoflowers showed a weaker association with the cell membrane
but, after the nanoparticle internalization the amount of internalized
iron was in the same range for the different morphologies.[273] Other
authors have shown that the internalization of nanoflowers (multicore
particles) was higher than single-core ones.[267] The reason of these
differences probably relies on the many other different parameters af-
fecting the cell internalization such as the particles volume, surface cur-
vature, coating, etc.

It is also generally accepted that for nanomaterials with different ge-
ometries, particles with high aspect ratio geometries show longer circu-
lation times when compared to spherical particles. However, the
number of studies comparing the biodistribution of iron oxide magnetic
nanoparticles with different shapes is scarce. In the case of iron oxide
nanoparticles, nanoworms have been shown to have an increased up-
take in tumours in comparison with the single nanoparticles counter-
parts.[176] In contrast, when comparing the amount of nano-
octapods to nanospheres that reach the liver of a mouse model, similar
amounts of material were found. [274]

It can be concluded that, given the complexity of biological systems
and the multitude of parameters, such as the particle volume, polydis-
persity, colloidal stability, surface coating, protein corona formation, en-
dotoxin presence, etc. that have a fundamental role in the nanoparticles
uptake and biodistribution, it is difficult to find two materials that allow
the evaluation of the role of the nanoparticles geometry by isolating this

Fig. 20. Silica coating elongated magnetic nanoparticles of around 250x50 nm showing high uptake in HeLa cells and low toxicity after 24 and 48 h of incubation. Images adapted from

[266].
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variable from the rest of parameters that affect the experiments. There-
fore although the shape of the particles seems to have an important role
in the cell uptake and biodistribution of the particles, further investiga-
tions are required to have a complete picture of the impact of shape on
the interactions between the particles and the biological environment.
(58]

4.3.3. Degradation in biological environments

Another important parameter to understand the possible long-term
toxicity of these materials is their biodegradation. Biological environ-
ments may present very hostile conditions for the particles. Especially
highly acidic media with specific proteins able to degrade the particles
coatings found in lysosomes can cause the fast nanoparticles corrosion.
Knowledge on the degradation process of the particles is fundamental
to design particles able to be rapidly cleared from the organism, or
long-lasting ones, in case they need to be used for long-term applica-
tions such as repeated MRI image acquisitions or repeated hyperther-
mia treatments.

The degradation of iron oxide nanocubes has been evaluated in sim-
ulated lysosomal environment, in cell cultures and in vivo. It was found
that the degradation of the cubes is not correlated with crystalline ori-
entation. The process fits better with a stochastic degradation, which
was initiated in the areas not covered by the particles coating, rendering
smaller particles with eroded shapes.[259] In addition to the important
role of the coating on the degradation process, the aggregation of parti-
cles has also been found as a critical parameter affecting the degradation
kinetics, in this case, protecting from the particles degradation. The deg-
radation of nanoflowers has also been followed when exposed to a
media that simulates the intracellular lysosomal environment. In this
case, the pores of the nanoflowers structure seem to enhance the grad-
ual corrosion of the particle.[275] In this kind of particles, the junctions
between the cores are the most vulnerable sites, leading to a fast disin-
tegration of the multi-core structure. [276]

Knowledge on the degradation kinetics of the particles is also funda-
mental in the frame of recent discoveries on an iron-dependent cell
death mechanism termed ferroptosis.[277,278] The iron-catalyzed
ROS production through the Fenton reaction may play a fundamental
role for iron-induced ferroptosis. This process may have a negative im-
pact on the particles toxicity once they start degrading but it can also
be used as a positive tool in the frame of new iron-oxide-based catalytic
cancer therapy.[279]

The fact that very few works have evaluated the degradation of
anisometric iron oxide nanoparticles in biological environments
makes it difficult to draw general conclusions on the advantages or dis-
advantages of specific shapes. Therefore, further studies on the degrada-
tion of iron oxide nanoparticles with different shapes are required to
achieve a complete picture of the role of the particles shape on their
degradation.

5. Biomedical applications
5.1. Hyperthermia

Magnetic hyperthermia using Fe304/y-Fe,03 nanoparticles has the
advantage of selectively killing tumoral cells over healthy ones just by
increasing the temperature up to 42-43 °C in the target area where
the particles are located.[280] Briefly, the particles are able to release
heat under the action of an alternating magnetic field. Usual frequencies
range from 100 to 700 kHz and field amplitudes up to 500 Oe but there
is a safe limit that the product of the frequency by the field should fulfil
(5.1-10°A-m!-s™"), otherwise inductive heating through eddy currents
are generated and heating becomes non-specific. [281,282] The specific
absorption rate (SAR) is a physical magnitude related to magnetic nano-
particles heat dissipation. The most common calorimetric method to
evaluate the SAR is the placement of a suspension of magnetic nanopar-
ticles into an alternating magnetic fields (AMF), which absorbs energy

from the field which is subsequently transformed into heat. If the field
is strong enough, and also thermal losses are small enough, SAR values
can be calculated from the following equation: SAR = (Cpq/Cre) x [dT/
dt]i—o, from the temperature derivative over time at instant t = 0
[283] and the heat capacity of the solvent (Cyq) and the mass iron con-
centration (cg.) Fig. 21 shows SAR values obtained under moderate
values of field and frequency (<300 Oe and <300 kHz) for magnetite
nanoparticles of different shape (Data and references shown in Table
8). It is important to highlight that there are several heating mecha-
nisms implied in the heat release.[284] The structural and colloidal
properties of the particles (i.e. particle size, shape, aggregation state, in-
teractions), the media and the AC applied field (frequency and ampli-
tude) determine the dominant mechanism making the others of little
importance.

An extensive research has been done in the use of Fe;04nanocubes
on magnetic hyperthermia. For example, the heating properties of sam-
ples with sizes ranging from 13 to 38 nm were tested under different
conditions of field and frequency.[230] The best performance was
achieved for 19 nm cubes reaching a SAR of 2277 W-g! (700 kHz,
300 Oe). Smaller and larger cubes did not register a significant heating
(<300 W-g1) due to the lack of contribution of hysteresis losses for
13 nm nanocubes, while for the 38 nm cubes the reason was the large
anisotropy field and formation of isotropic 3D aggregates. However,
when these 38 nm cubes were isolated by gallol-polyethylene glycol
(GA-PEG), they exhibited a SAR of 1400 W-g™! (320 kHz and field of
300 Oe).[285] Bacterial magnetosomes of 30 nm in length were also
evaluated as nano heaters registering values up to 960 W-g™! at 410
kHz and 125 Oe.[282] Much larger nanocubes, 60 nm in size coated by
chitosan, leads to a SAR value of 2614 W-g! under an AC field of 1
MHz and 8.2 Oe due to the contribution of the hysteresis losses mecha-
nism. [260] It should be mentioned in this case that sizes are of the order
or slightly above the domain size, so magnetization reversal mechanism
should be domain wall motion.

For ferromagnetic nanoparticles where hysteresis losses are the
dominant mechanism, aggregation is in general an undesired effect
diminishing the heating efficiency.[286] Direct studies performed on
cubic nanoparticles reveal that SAR values decreases when particles
are arranged forming 3D clusters which look like magnetic beads.[73]
However, it has been demonstrated theoretical and experimentally
that if the particles are forming chain-like structures and aligned in
the direction of the field, SAR values increase at least five times in

Fig. 21. Specific adsorption rate values (SAR) obtained under moderate values of field and
frequency (<300 Oe and < 300 kHz) for magnetite nanoparticles of different shape (Cubes/
Octaherdra) in red, elongated in black and flowers in green). Red line show the effect of
the size on the SAR values for cube-like shape nanoparticles. The effect of the field
conditions are shown also for cubes, rods and flowers (high frequency (F) and high field
(H)). (Data and references shown in Table 8).
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Table 8
Hyperthermia performance of Fe;0,4 nanoparticles with different morphology under AC
magnetic fields with different frequency and amplitude.

Morphology Author/Year/reference Size (nm) Frequency Field SAR

(kHz) (Oe) (W-g)
Cubes Guardia 2014[285] 35 320 300 1391
Hergt 2005 [282] 30 410 125 960
Tong 2017 [295] 40 325 250 2560
Guardia 2012 [230] 20 700 300 2277
Bae 2012 [260] 60 1000 8 2614
Espinosa 2016 [74] 20 900 250  4850°
Octahedrons Mohapatra 2015[290] 6 247 310 163
8 247 310 184
12 247 310 275
Lv 2015[291] 13 358 800 1220
22 358 800 2483
43 358 800 2629
98 358 800 750
Rods Geng 2016[91] 45x10 390 415 1072
Das 2016[132] 65x5.7 310 800 1300
41x7 310 800 540
Nanoplates  Ma 2013[292] 150-200 180 12 253
x10-20
Yang 2014{140] 225x26 488 580 4400
Nemati 2017[296] 12x3 310 800 125
Flower-like  Hugounenq 2012 [35] 50 (11nm 700 270 1790
single core)

2 SAR calculated under the action of a 808 nm laser.

high viscosity medium.[287] The comparison of structures with differ-
ent morphologies but same volume reinforces the latter assumption. It
was found that 24 nm spheres dissipate less heat than 19.5 nm cubes
and this was attributed to the formation of chain-like aggregate struc-
tures in the case of the cubes. However, comparing heating properties
of 53 nm spheres and 43 nm cubes it was found better heating proper-
ties for the spherical ones because the cubes were forming strong and
isometric aggregates.[288]

In the last years, magnetic hyperthermia has been combined with
photothermal therapy bringing positive effects as it is known that
Fe30,4 presents some absorption in the Near-infrared (NIR) range (Fig.
22a).[289] By using a NIR laser of 808 nm with a power density of 2.5
W -cm™ combined with an alternant magnetic field (900 kHz, 250 Oe)
to a suspension of non-aggregated 20 nm nanocubes, SAR values around
4850 W-g™! are obtained. It is worth to note that the SAR value mea-
sured using only magnetic hyperthermia is around 1000 W-g™! and, in
principle, there is no coupling between the magnetic and electric field
as the iron oxide is not a good magnetoplasmonic material. [74]

Octahedral FesOgparticles (12 nm) presented also enhanced SAR
values comparing to the spherical ones as a result of their better mag-
netic properties (higher Ms and susceptibility). Thus, 6-12 nm octahe-
drons exhibit values from 163 to 275 W-g™! (247 kHz, 310 Oe) due to
the susceptibility losses mechanism (Néel and Brown relaxation).
[290] SAR values from around 40 nm octahedrons measured at 358
kHz at different fields goes from 157 W-g™! at 200 Oe to 2483 W-g"!
at 800 Oe (Fig. 21).[291] When the particle size of the octahedrons in-
creases to 98 nm, the measured SAR reached 2629 W-g™l.

Elongated Fe;04nanoparticles have received a great attention due
to their larger effective anisotropy given by their high aspect ratio.
Values up to 1072 W-g! have been measured for rods of 45x10 nm
(390 kHz, 415 Oe) synthesized by reduction of akaganeite (3-FeOOH)
nanoparticles. Besides, larger rods (400x40 nm) displayed lower SAR
values due to its higher switching field to reverse the magnetic mo-
ment.[91] In the case of iron oxide nanorods made by solvothermal ap-
proach (65x6 nm), their SAR value reaches 1300 W-g™! (310 kHz, 800
Oe) showing that, if the field amplitude is large enough to reverse the
magnetic moment, SAR values increases with the aspect ratio. In con-
trast, low aspect ratio elongated particles (41x7 nm) only reached SAR
values of 540 W-g™1.[132] Interestingly, it has been reported that the
elongated morphology of Fe;0,4 rods (200x50 nm) could induce cancer

cell death on HeLa cells under mechanical oscillations under expo-
sure to a 35 kHz oscillating magnetic field.[71] This low frequency
is associated to the Brownian motion of the nanorods, i.e. physical
rotation or vibration leading to mechanical disruption of the cell
membrane.[70]

Fe;04hexagonal nanoplates with a side length of 150-200 nm and a
thickness of 10-15 nm synthesized by hydrothermal method in one step
display a SAR value of 245 W-g! (180 kHz, 12 Oe).[292] However, for
nanodisks of similar sizes (225 nm in diameter and 26 nm in thickness)
when the frequency and applied field increases, a boost of the SAR value
up to 4400 W-g! (488 kHz, 580 Oe) can be observed. [140]This high
performance is due to the parallel alignment of the nanodisks with the
magnetic field. The dominant heating mechanism was hysteresis loss
induced by a vortex domain structure originated by the circular ar-
rangement of the spins. [225,293] This vortex domain structure has
the advantage of providing a negligible remanent magnetization so ag-
glomeration due to dipolar interactions is avoided. In conclusion, paral-
lel orientation and vortex domain structure are the responsible for the
high SAR values observed for this morphology. However, nanodisks of
12x3 nm lack of this vortex domain configuration and exhibit low SAR
values (125 W-g™!) in spite of using high frequency and field (310
kHz, 800 Qe).

Like elongated nanoparticles, nanodisks morphology could induce
cell death through magneto-mechanical effects (Fig. 22b).[294]
Nanodisks of Permalloy coated with gold (1 pm in diameter and 60
nm thickness) where able to exert mechanical forces to the cell under
a low alternating field of maximum 60 Hz and 90 Oe and induce cell
death by apoptosis in N10 glioma cells. Cell death mechanism, either ap-
optotic or necrotic, can be regulated by the magnitude of the magnetic
field. Alternating magnetic fields of low frequency induce a shift of the
disk vortex structure, creating an oscillation and transmit a mechanical
force to the cell. This strategy opens a new pathway where magnetic
iron oxide nanodisks could be applied.

Superparamagnetic flower-like particles of 50 nm consisting in
spherical aggregates of 11 nm grown by the polyol method exhibit a
large SAR value of 1790 W-g™!, much larger than the SAR measured
for single 11 nm particles (48 W-g!). For this special morphology, as
the aggregate size increases the SAR becomes larger but a compromise
should be reached between colloidal stability and heating performance.
It is clear that the improvement of the SAR values comes from the coop-
erative interaction of these superparamagnetic cores within the particle.
(35]

In general, the morphologies that exhibit better heating perfor-
mance under an alternating magnetic field are nanocubes and octahe-
drons. It should be noted that SAR values have been enhanced going
from around 100-200 W-g™! up to over 3000 W- g"! improving materials
and magnetic conditions. Two recent strategies have shown to amplify
the heating efficiency of magnetite suspensions: Controlling specific
magnetic interactions between particles (exchange and dipolar interac-
tions) and the combination of magnetic hyperthermia with
photothermal therapy. In the former case, shape-controlled iron oxide
nanoflowers, firstly synthesized by Caruntu et al. can be highlighted.
[150] In recent years, they have emerged as promising candidates for
magnetic hyperthermia because of exchange interaction found for this
particular structure, which consists of densely packed aggregates of
iron oxide crystallites/cores, with an irregular shape and a slight shape
anisotropy. It was recently demonstrated that the individual
nanoflowers had a remanent magnetization (due to an exchange cou-
pling between the cores), were preferentially magnetized along their
longest dimension (due to shape anisotropy), but with a slight internal
spin disorder/misalignment.[297] Moreover, it was showed that the in-
trinsic loss power of the nanoflowers was independent of the viscosity
of the surrounding medium for the high-frequency applied field, unlike
previous hyperthermia studies of these systems conducted at other fre-
quency conditions. This is in agreement with the high-frequency range
relaxation dynamics of the nanoflowers dominated by internal moment
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Fig. 22. a) UV-VIS-NIR spectrum of Fe;0.. Reprinted with permission from [289]. Copyright (2003) American Chemical Society; b) Scheme of the magnetochemical cancer-cell destruction
system using disk-shaped magnetic particles possessing a spin-vortex ground state. Reprinted with permission from [294]. ©2010, by Springer Nature; c) Scheme of the experimental
device for combined hyperthermia experiments, consisting of a magnetic coil in which the sample is placed so that it can be illuminated by the NIR laser (808 nm). Reprinted with

permission from [74]. © (2016) American Chemical Society.

relaxation. Besides exchange coupling, improved heating efficiency has
been obtained by forming chain-like structures, controlling dipolar in-
teractions. Dipole-dipole interactions generally leads to effective de-
crease in coercivity, remanence, and hysteresis losses with respect to
the isolated particles, which leads, among other effects, to worse mag-
netic hyperthermia efficacy.[287] However, it was theoretically pre-
dicted that chain-like arrangements biomimicking magnetotactic
bacteria has larger area of hysteresis losses and therefore superior
heating performance, increasing more than 5 times in comparison
with the randomly distributed system.[298] Recently, such dipolar in-
teractions were exploited for enhanced heating thanks to the shape-
controlled synthesis of asymmetric dimer and trimers of iron oxide
nanocubes. By means of a kinetic Monte Carlo computational model,
the effect of magnetic dipolar interactions on the heating efficiency
was unequivocally demonstrated.[208]

The second strategy to amplify the heating efficiency is the combina-
tion of magnetic hyperthermia with photothermal therapy. Here, it was
demonstrated that it is important to retain the Fes04 phase on the
nanocubes as its absorbance in the NIR range decreases when oxidize.
Interestingly, in terms of SAR values, elongated nanoparticles have not
shown high SAR values as expected due to the magnetic shape anisot-
ropy contribution. Nevertheless, for this morphology it is interesting
the possibility of promoting cell death under magneto-mechanical
forces exerted to the cell membrane by application of alternating mag-
netic fields of low frequency (20-70 kHz), enough to promote physical
rotation of the particles. The same mechanisms could be expanded to
nanodisks, but in this case using smaller frequencies of tenths of Hz
due to their larger volume.

5.2. Magnetic resonance imaging

It is well known that magnetic nanoparticles, either magnetite or
maghemite, can act as contrast agents leading to a negative contrast as
a consequence of the shortening of the transversal relaxation time (T2
contrast agent) of the nearby water protons induced by the local field
from the magnetic nanoparticles. Indeed, there are different formula-
tions for superparamagnetic iron oxide nanoparticle suspensions such
as Feridex, Endorem or Resovist approved by the FDA. Unfortunately,
they were removed from market due to the lack of clinical use. [299]
However, their comeback is not discarded if the toxicity and side effects
from gadolinium complex is confirmed.[300]. To evaluate the perfor-
mance of a contrast agent, one of the parameters is the measurement
of the longitudinal or transversal relaxivity (r; or r, respectively) as it
measures the perturbation of the local field generated by the magnetic
nanoparticles on the relaxation time of the water protons

Small nanocubes coated by DMSA with different sizes exposing
(100) facets revealed that the transversal relaxivity (r,) increases with
particle size rising from 76 mM™'-s™! for 7 nm nanocubes up to 298
mM'-s! for 21 nm ones, revealing that the relaxation takes place in
the motional averaging regime (MAR).[301] However, single Fe304
nanocubes 23 nm in size and prepared by thermal decomposition pre-
sents r, values up to 398 mM!-s™!, much larger than when clustered
in beads of 200 nm in size, in which case they exhibit r, relaxivities
around 161 mM-s™! indicating that such beads promotes the relaxa-
tion of water protons in the dephase regime (static dephase regime,
SDR).[73] The reason for such decrease lies on their lower magnetic mo-
ment per bead compared to the single cubes. Larger nanocubes around
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the domain size of Fe304 (58 nm) surrounded by PEG-phospholipid ex-
hibit a r, of 324 mM™'-s! (Fig. 23).[302]

Elongated magnetite nanoparticles exhibit a great performance in
MRI only at high fields (3 T) (Table 9). For example, Fe30, rods of 25 and
50 nm in length (with 5 nm in diameter) coming from the decomposi-
tion of iron(IIl) acetylacetonate and coated by PEI have r, values of 670
and 905 mM'-s7! respectively.[303] This boost enhancement arises
from the high M; and high surface to volume ratio of the nanostructures
leading to an enhancement of the water molecules diffusion around the
particles. In the same way, magnetite nanorods of 70x12 nm in size,
coming from the reduction of p-FeOOH rods, displays a r, constant of
608 mM'-s™!. Smaller rods of 30x4 nm exhibit a relaxivity constant of
312 mM .57 [135]

Hollow iron oxide nanoparticles of 11 nm with a void of 5 nm
carved under the etching done by TOPO, shows poor performance as
T2 contrast agent because the r, goes from 60 mM!-s™! before etching,
to 1.25 mM'-s! once the particles have been carved by TOPO.
Fe;04nanoring structure is also another type of morphology which is
not favoured for the application of contrast agents for MRI.[162] Iron
oxide nanorings with a magnetization out-of-plane register r, values
of 74 and 55 mM'-s™! for 200 and 100 nm nanorings respectively.[304]

The growth of flower-like <y-Fe,Osnanoparticles by the polyol
method has brought an improvement on the relaxometric properties
of the particles for MRI when evaluated for T2 contrast agents
(Fig. 23). Thus, 10 nm particles clustered in small aggregates of around
30 nm and coated by citric acid, exhibit a r, constant of 365 mM-s7},
1.8 times higher than single core nanoparticles made by the same
method.[144] This improvement is due to the cooperative behaviour
of the magnetic moment which increases the intensity of the local mag-
netic. It has been observed from theoretical studies that the spin-spin
relaxation occurs in the motional average regime (MAR) for clusters
up to 120 nm and the r; increases with the particle size. However, if
the particles are highly aggregated or are too big, the magnetic particles
generate a strong magnetic field, the nearby protons are completely
dephased (static dephase regime, SDR)[305] and do not contribute to
the MRI signal. For larger clusters with similar core size it has been ob-
served greater r, values up to 405 mM"-s™! for 50 nm clusters and 508
mM'-s! in the case of clusters of around 86 nm.[252] Larger particles
(15 nm) with a cluster size of 39 nm show r, values up to 418 mM"~
T.s1[227].

During the last years, the number of studies based on the possibili-
ties of iron oxide as T1 contrast agents has increased [306]. Magnetic
iron oxide T1- contrast agents, lead to bright contrast, as it was pro-
posed for gadolinium complexes[307] or MnO nanoparticles,[308] but
is proposed as a safer alternative to gadolinium-based T1 contrast
agents [306]. For example, ultrathin iron oxide nanowhiskers (20x2

Fig. 23. 1, relaxivity values at 1.4 or 1.5 T fields (~60 MHz) for magnetic nanoparticles of
different shapes.

nm) growth by the hydrolysis of iron(IIl) oleate and oleylamine at 150
°C and capped by tween-80, show interesting properties as T1 contrast
agents due to its high r; (6.3 mM™'-s") and low r, (11.15 mM'-s71).
The reason for such behaviour lies on its nearly paramagnetic behaviour
due to its ultra-small diameter [245].

In summary, there are two morphologies showing great perfor-
mance for T2-contrast agents, i.e. elongated nanostructures and
flower-like nanoparticles (Fig. 23). In the first case, the large magnetic
shape anisotropy together with the high surface-to-volume ratio
seems to be the origin of the MRI enhancement. In the case of the
nanoflowers, the superferrimagnetism arising from the clustered mor-
phology seems to be responsible for it. Cluster size and morphology,
which sets the crystal facets exposed to nearby water molecules, have
been shown to be critical parameters for the performance of such mag-
netic particles as MRI T2 contrast agents. A new alternative based on the
exploitation of the near-paramagnetic properties of elongated and low
crystalline magnetic iron oxide nanoparticles opens a new scope for
magnetic iron oxide nanoparticles and their used as T1-contrast agents.

5.3. Drug delivery

Magnetic nanoparticles can deliver active compounds to targeted
organ/tissue or cells, active or passively. The active targeting depends
on the attachment of ligands to the nanoparticles surface, which bind
specifically to certain receptors on the targeted cells. [309,310] On the
other hand, passive targeting depends on the enhanced permeability
and retention effect (EPR effect), explaining their diffusion and accumu-
lation in sites with compromised vascular system.[311] The use of
anisometric nanoparticles for drug delivery relies on their high sur-
face-to-volume ratio in combination with enhanced magnetic response
and also the possibility of cargo in the case of the hollowed structures.
On top of that, drug delivery can be combined with magnetic heating
to control the drug release and with MRI to follow the treatment and
biodistribution/degradation of the particles.

Iron oxide nanocubes (19-22 nm) have been used as drug
carriers [312] with a thermoresponsive polymer shell (Poly(N-
isopropylacrylamide)), via RAFT (reversible addition-fragmentation
chain transfer) polymerization (Fig. 24 A-B), loading an anticancer
drug, Doxorubicin (Dox), which could be released due to the heat gen-
erated by the nanocubes under an alternating magnetic field. The drug
loading was around 45 % with respect to the initial Dox amount. For
the release it was found that only 8% of the drug loaded was released
over 24 hours at 37 °C, and more than 90 % was released in less than 5
hours when the temperature was raised until 50 °C, clearly demonstrat-
ing that the release was heat triggered (Fig. 24 C). In the same study,
triggered drug release was remotely controlled by an alternating mag-
netic field (220 kHz and 250 Oe) with an iron concentration of
3.8 mg/mL, where about 25% of the drug was released over 4 hours.
During the magnetic field exposure the temperature of the solution
reached 80 °C in the first 15 minutes.

Moreover, 18 nm iron oxide nanocubes were loaded in the shell of
polyelectrolyte microcapsules of 4.6 um diameter with Cascade Blue-la-
belled dextran (Fig. 24 D-E) and the release was performed by applying
an AMF (300 kHz, 300 Oe) [313]. Upon 90 minutes of exposure time the
final temperature was about 90 °C using a concentration of 4.8 g-L!.
Some capsules were damaged due to the heat and got partially broken
resulting in the release of free magnetic nanoparticles from the capsule
wall, as well as the release of Cascade Blue-labelled dextran (Fig. 24 F).
For a controlled release of the cargo, an iron concentration of 2.7 mg/mL
allowed a suitable temperature increase for opening the walls of the
capsules, with a final temperature above 80 °C. However, the field treat-
ment did not release all the cargo molecules, which could be due to the
structure of the polyelectrolyte capsules. Some cargo molecules can stay
attached to the charged polyelectrolytes of the matrix, even after dis-
ruption of the wall.
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Table 9
Summary of the different relaxivity rates of iron oxide nanoparticles with different morphologies and under different fields.
Morphology Author/Year/reference Size (nm) Field (T) r; (mM'-s) ry (mM1-s71) I/t
Cubic Zhou/2015([301] 7 0.5 25 76 3
15 0.5 19 80 42
21 0.5 27 298 11
Materia/2015[73] 23 single 1.0 242 398 16.4
23 (200nm beads) 0.5 2.25 161 72
Lee/2011 [302] 58 1.5 -—- 324 -
Elongated Mohapatra/2015[135] 30x4 3 - 312 -
70x12 3 - 608 -
Orza/2017[303] 25x5 3 - 670 -
50x5 3 -— 905 -—
Macher/2014[245] 20x2 14 6.3 11.15 1.8
Flowers Lartigue/2012[144] 10( 30 nm cluster) 0.2 - 365 -
Kostopoulo/2014[252] 8-10 (50 nm cluster) 14 - 405 -
8-10 (86 nm cluster) 14 - 508 -
Thomas/2016[227] 15 (39 nm cluster) 3 - 418 -
Hollows An/2008[162] 11 (void of 5 nm) 1.5 0.16 1.25 7.8
Disk/rings Liu/2015[225] 72 1.5 0.59 55.1 93
162 1.5 0.44 73.8 167

Iron oxide nanoflowers with a diameter of 1 um coated by a carbon
shell and tunable porosity, [314] were tested for loading acetamino-
phen, an antipyretic and analgesic drug (Fig. 24 G). The porous and
heavily functionalized carbon shell with carboxyl and hydroxyl groups
provides a pathway for molecules to diffuse or bind together by collec-
tive hydrogen bonding. The drug loading is affected by the mesoporous
structure, surface property and morphology, being increased with the
increase of the specific surface area and pore volume of the material.
In the case of these nanoflowers with a pore diameter of 65 nm the acet-
aminophen loading was around 30% (saturation) in 2 hours, with a
loading degree of 26% in 1 hour. With regard to the release, the rate of
the process was studied in PBS (Phosphate-buffered saline) at 37°C,
exhibiting faster release rate those samples with larger average pore
size (Fig. 24 H). The initial burst release of Fe304 NFs reached 74% in 2
hours and 80% after 4 h.

Hollow microspheres of rattle-type magnetic carbon (Fe30,@C)
were synthesized (Fig. 25 A) and investigated as drug carriers [315].
The final size of these microcapsules loaded with Doxorrubicin was
estimated to be 235 nm and tunable C shell thickness (Fig. 25 B). The
release of the drug occurs by diffusion and almost all the drug was re-
leased within 12 hours (82 %). The shell thickness (12 nm, 28 nm, and
40 nm) had influence on this release, the thinner carbon shell releases
faster, i.e. 82% (12 nm), 74% (28 nm) and 69% (40 nm) respectively to
the shell thickness (Fig. 25 C).

Porous hollow nanoparticles of Fe;0,4, with an average size of 16
nm, prepared by controlled oxidation of amorphous core/shell Fe nano-
particles by the oxygen-transfer reagent trimethylamine N-oxide
(Me3NO) were used as a cisplatin delivery vehicle (Fig. 25 D-E). [316]
The release by diffusion through the pores could be easily controlled
by adjusting the pore sizes and medium pH, since the acidic medium re-
sults in wider pore opening and faster release of cisplatin (Fig. 25 F). The
shell has a thickness of about 3 nm and a hollow interior about 10 nmin
diameter, with pores of around 2-4 nm. The pH-sensitive pore opening
can accelerate the cisplatin release in the acidic endosomes/lysosomes
once the nanoparticles are internalized. For example, at pH 7.4 the
nanoparticles show a gradual release with t;, = 16 h (the time needed
for the release of 50% of the dose) while at pH 5 the cisplatin release is
accelerated with t; , = 4 h. Likewise, hollow iron oxide nanoparticles
were used to encapsulate Doxorrubicin which has also a pH-dependent
drug release behaviour. [269] The nanoparticles synthesis renders parti-
cles with an average hydrodynamic diameter of about 120 nm (with the
doxorubicin encapsulated) and with a charge of +16 mV. [316]
Doxorrubicin release rate was measured at room temperature with
two different pH values (pH 7.4 and 5). After 24 h incubation at pH

7.4 only 30% of the doxorubicin was released, while the release rate at
pH 5 was much faster, where over 80% of doxorubicin was released.

Magnetic hollow spheres of Fe;0,nanosheets (2-4 um) were pre-
pared by precursor-templated conversion method, with surface modi-
fied with poly(ethylene glycol) (PEG) (Fig. 25 G-H). [317] Ibuprofen
was used for drug loading and the release behavior was investigated
in a simulated body fluid (SBF) over a time period of 136 h. The drug
was progressively released by desorption and diffusion. At pH 7.4
about 37% of the loaded drug was released for the first 24 h and 67%
for 72 h, and then the drug release rate decreased and reached a value
74% for 136 h (Fig. 25 I).

5.4. Other biomedical applications

Magnetic hyperthermia, Magnetic Resonance Imagining and Drug
delivery, described above, are by far the most studied biomedical appli-
cations being developed using magnetic nanoparticles. Nevertheless,
these materials are constantly showing their great potential to revolu-
tionize classical medical treatments and therefore the number of new
biomedical applications using magnetic iron oxide nanoparticles has
been increasing exponentially over time. However, in many cases,
given the novelty of such applications, the impact of the nanoparticles
shape on their performance has not been fully elucidated yet. A few rel-
evant applications are briefly described below.

5.4.1. Magnetic biosensor systems

Magnetic biosensor systems are based on magnetic nanoparticles
functionalized with molecules able to recognize specific molecular tar-
gets. Sensing can be based on modifications of different properties of
the materials in presence of the target, such properties are the water
proton relaxation rates, the relaxation of the particles magnetic moment
or the effect of their magnetic properties in devices sensitive to the mag-
netic fields.[318] For these tests, each particle acts as a probe giving a
different signal. Given that the alteration of the magnetic nanoparticles
shape strongly affect their magnetic properties, very distinct magnetic
properties can be obtained for a set of particles with different
sizes and shapes. If the particles are then functionalized with different
recognition molecules, the simultaneous detection of different biologi-
cal molecules is allowed. For example, magnetite nmanospheres,
nanohexagons, cubes and rods were tested as part of a sensor based
on the signal corresponding to the second derivative of magnetization
around a zero field.[319] These differences opened the way to the use
of anisometric magnetic nanoparticles in multiparametric immunoas-
says given their characteristic magnetic signature.
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Fig. 24. Different systems of iron oxide magnetic nanocubes and nanoflowers used for drug delivery purposes: nanohybrids of iron oxide nanocubes with a thermoresponsive polymer
shell that can act as drug carriers for doxorubicin (doxo). (A) Scheme showing the synthetic approach, (B) Nanocubes singly coated by a thin polymer layer (arrows), (C) Drug release
from thermoresponsive cubic IONPs in a water bath at various temperatures. Reprinted with permission from ref [312]. © 2015 American Chemical Society. Iron oxide nanocube’s
modified microcapsules as a platform for magnetically triggered molecular release of Cascade Blue-labelled dextran (D-E). Fluorescence emission spectra (at Nexc = 280 nm
excitation) (F) of: free Cascade Blue-labelled dextran (black line), the supernatant of a capsule solution which had been treated for 90 minutes under an AMF (300 kHz and 24
kAm~1) (red line), and the supernatant of a control sample of capsules which had been kept at room temperature for 90 minutes and thus had not been exposed to an AMF (blue
line). Reprinted with permission from ref [313]. © 2015 Royal Society of Chemistry. Fe30,4 nanoflowers (G) used in the drug delivery test (H) with acetaminophen along with
composites with increasing porosity (S3-S5). Reprinted with permission from ref [314]. © 2013 Royal Society of Chemistry.

5.4.2. Magnetic particle imaging (MPI)

Magnetic particle imaging (MPI) is an imaging modality based on
the direct mapping of iron oxide nanoparticles. Most of the MPI tracers
studied until now are based on spherical particles, although there are
some recent works using nanoparticles with different shape. For exam-
ple, 15 nm cubes have been compared to 19 nm spherical magnetite
particles (prepared to have similar volumes) and the results were
that the spherical particles outperformed the cubic ones.[320] These re-
sults, that also occurred in doped particles of the two morphologies,
could be explained by the increase in anisotropy of the material, that
results in detrimental performance in the MPI signal. In addition,
flower-like multi-core structures with particle diameters between 40
and 120 nm and core sizes in the range between 16 and 56 nm were
evaluated as MPI tracers.[321] Given the complex and heterogeneous
structures of the materials prepared, a wide variety of magnetic behav-
iours were observed for this group of nanoflowers. As a result, these
differences allowed tunning their performance in MPI depending on
the drive field.

5.4.3. Cell separation

Cell separation comprise a group of technologies that enable to iden-
tify a specific type of cell from a heterogeneous mixture of them.[322]
This technology plays a fundamental role both in the diagnosis and
treatment of diseases. Magnetic cell sorting relies on the interaction be-
tween molecules attached to the magnetic particles that interact with
the cell surface. Then the nanoparticles must respond to a magnetic
force in order to be guided to specific locations. One recent example of
anisometric nanoparticles for magnetic separation has been just devel-
oped based on the use of nanooctapods provided their enhanced mag-
netic susceptibility, small coercivity and good magnetophoretic
mobility.[323]

6. Conclusions and future remarks

The improvement of the performance of magnetic iron oxide nano-
particles in the different applications requires the design of more com-
plex synthetic nanostructures, uniform in size and with morphologies
different from the spherical one, leading to enhanced properties, i.e.
high magnetic anisotropy, larger specific area, and new ones like vortex
magnetic domains structures or magnetomechanical properties. Those
properties are very advantageous not only in theranostic applications
(MRI and magnetic hyperthermia) but also in others like environmental
remediation, Li-ion batteries, spintronics and microwave absorption.

This review summarizes the colloidal synthetic routes that lead to
magnetic nanoparticles with morphologies different from the spherical
one and analyses the key parameters on each route that control particle
size and shape. Although the final size and shape of the nanocrystals can
be interpreted in terms of classical nucleation and growth theory, it is
worth to note that there are several factors that govern the growth
and subtle changes could lead to a change in size and morphology.
There is no unique route to obtain a specific morphology, so the final
choice should depend on the target size, capping molecules and disper-
sant. Moreover, factors like time, energy consumption, environmental
issues, cost and scalability should be considered when translating
these processes to the industry. Thermal decomposition and
solvothermal approaches can lead to almost all the morphologies pre-
sented in the review. Thermal decomposition has the advantages of pro-
ducing highly monodisperse nanoparticles with high crystallinity.
However, it needs the use of organic solvents that are not environmen-
tally friendly, and for the application in biomedicine, a further step for
water transference and colloidal stabilization is needed. On the other
side, solvothermal methods are able to produce nanoparticles stable in
water, with protocols less sophisticated than the thermal decomposi-
tion, and using solvents more environmentally friendly. Nevertheless,
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Fig. 25. Different systems of iron oxide hollow particles and used for drug delivery purposes: porous hollow nanoparticles for cisplatin storage and release. Magnetic carbon (Fe;0,@C)
hollow microspheres were synthesized for sustained-release of doxorubicin. (A) Schematic synthetic approach, (B) TEM images of the synthesized hollow microspheres prepared with
increasing shell thickness, optimizing the pyrrole concentration (0.1, 0.75 and 2 ml) and (C) Drug-release kinetic curves obtained from three products with different shell thicknesses
(12, 28, and 40 nm). Reprinted with permission from ref [315]. © 2017 Elsevier. Hierarchically nanostructured hollow spheres assembled by magnetic iron oxide nanosheets for the
favourable release of ibuprofen. (D) Schematic illustration the synthetic approach and the loading, (E) TEM image of the 16 nm porous hollow nanoparticles and (F) pH-dependent
release of cisplatin from Pt-PHNPs (19.6% Pt/Fe). The Pt-PHNPs were incubated in PBS at pH = 7.4 or at pH = 6.0 or 5.0) at 37 °C. Reprinted with permission from ref [316]. © 2009
American Chemical Society. (G) Scheme for the preparation of the hollow structures and the ibuprofen loading, (H) SEM image of the final particles where the constituent nanosheets
are visible. (I) Ibuprofen release profile from ibuprofen-PEG-coated Fe;0,4 hollow spheres in simulated body fluid. Reprinted with permission from ref [317]. © 2008 American

Chemical Society.

the synthesis is not easily scalable, requires long reaction times and in
many cases, a final step for the reduction of the resulting nanoparticles
to magnetite.

Structural and magnetic properties of the anisometric nanoparticles
depend on the choice of the synthetic route. For example, in the case of
elongated nanoparticles, porous structures can be achieved by using
shape-templating routes and further reduction to magnetite. In con-
trast, elongated nanoparticles grown by solvothermal method are gen-
erally highly crystalline. Regarding the magnetic properties, it is
remarkable the finding of magnetic vortex spin configurations in
nanodisks leading to negligible interparticle interactions, which could
be very advantageous for biomedical applications.

In addition to the effect of the shape on the particles physicochemi-
cal properties, other relevant parameters related to their use in biomed-
ical applications, such as their toxicity, cell uptake, biodistribution or
degradation, have to be evaluated. However, given the complexity of
the biological environment, it is very difficult to isolate the nanoparti-
cles shape from other relevant factors that may have an impact of the
materials properties such as the particles size, polidispersity, stability,
surface coating, protein corona formation or endotoxin presence. The

lack of standardization on the analysis of some of these properties
makes it difficult to compare results from different research groups.
Therefore, we believe that the research community working on mag-
netic nanoparticles for biomedical applications should make a big effort
towards the development of standard protocols that would facilitate the
comparison of data.

Most of the research on magnetic nanoparticles for biomedicine
until the last decade has been carried out with spherical particles, focus-
ing on particle and aggregate size, the synthetic route chosen and the
coating. Since the last decade, the number of literature regarding the
synthesis and applications in biomedicine of non-spherical particles
has boosted, demonstrating the interest respect to their spherical equiv-
alents. For example, the use of magnetic nanocubes and nanodisks in
magnetic hyperthermia leads to an increment in the SAR values, also
showing a great performance in in vitro studies. Interestingly, the poten-
tial of these particles can be increased if magnetic hyperthermia is com-
bined with photothermal therapy or if the nanocubes are integrated
into a hybrid heterostructure with gold particles. In the case of the
nanodisks and elongated nanoparticles, the benefits come not only
from the high SAR values, but also for the possibility to induce physical
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rotation or vibration when subject to an alternating magnetic field of
few Hz inducing a mechanical effect on the cell membranes leading to
apoptosis.

The synthesis of anisometric magnetic iron oxide nanoparticles also
brings benefits for MRIL. On one hand, due to the high specific area, elon-
gated nanoparticles are a promising geometry leading to higher r,
values. Magnetic nanoflowers, due to its spatial clustered configuration,
which enables the superferrimagnetism, have also exhibited a great po-
tentiality for MRL On the other hand, magnetic particles with poor mag-
netic properties such as nanowhiskers have shown excellent
performance as T1-contrast agents due to their low r,/r; values.

Although there are a vast number of synthetic routes leading to
anisometric magnetic iron oxide nanoparticles showing a great perfor-
mance in biomedicine, there is room for improvement to control how
these materials are produced in a more robust, reproducible and scal-
able way in order to fulfil the requirements of the FDA and other regu-
latory agencies before they reach the clinical practice. Moreover, an
accurate and standardized systematic cytotoxicity assessment is needed
to understand the interaction of cells with nano-objects with special
geometries.
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