240 research outputs found

    Probing the AGN Unification Model at redshift z \sim 3 with MUSE observations of giant Lyα\alpha nebulae

    Full text link
    A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Lyα\alpha nebulae around AGNs at redshift z\sim3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Lyα\alpha nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances r>30r>30~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r\lesssim30 pkpc) and the associated high values of the HeII to Lyα\alpha ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Lyα\alpha nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Deviations from the local field approximation in negative streamer heads

    Get PDF
    Negative streamer ionization fronts in nitrogen under normal conditions are investigated both in a particle model and in a fluid model in local field approximation. The parameter functions for the fluid model are derived from swarm experiments in the particle model. The front structure on the inner scale is investigated in a 1D setting, allowing reasonable run-time and memory consumption and high numerical accuracy without introducing super-particles. If the reduced electric field immediately before the front is >= 50kV/(cm bar), solutions of fluid and particle model agree very well. If the field increases up to 200kV/(cm bar), the solutions of particle and fluid model deviate, in particular, the ionization level behind the front becomes up to 60% higher in the particle model while the velocity is rather insensitive. Particle and fluid model deviate because electrons with high energies do not yet fully run away from the front, but are somewhat ahead. This leads to increasing ionization rates in the particle model at the very tip of the front. The energy overshoot of electrons in the leading edge of the front actually agrees quantitatively with the energy overshoot in the leading edge of an electron swarm or avalanche in the same electric field.Comment: The paper has 17 pages, including 15 figures and 3 table

    Barred Galaxies in the Coma Cluster

    Full text link
    We use ACS data from the HST Treasury survey of the Coma cluster (z~0.02) to study the properties of barred galaxies in the Coma core, the densest environment in the nearby Universe. This study provides a complementary data point for studies of barred galaxies as a function of redshift and environment. From ~470 cluster members brighter than M_I = -11 mag, we select a sample of 46 disk galaxies (S0--Im) based on visual classification. The sample is dominated by S0s for which we find an optical bar fraction of 47+/-11% through ellipse fitting and visual inspection. Among the bars in the core of the Coma cluster, we do not find any very large (a_bar > 2 kpc) bars. Comparison to other studies reveals that while the optical bar fraction for S0s shows only a modest variation across low-to-intermediate density environments (field to intermediate-density clusters), it can be higher by up to a factor of ~2 in the very high-density environment of the rich Coma cluster core.Comment: Proceedings of the Bash symposium, to appear in the Astronomical Society of the Pacific Conference Series, eds. L. Stanford, L. Hao, Y. Mao, J. Gree

    Numerical description of discharge characteristics of the plasma needle

    Get PDF
    The plasma needle is a small atmospheric, nonthermal, radio-frequency discharge, generated at the tip of a needle, which can be used for localized disinfection of biological tissues. Although several experiments have characterized various qualities of the plasma needle, discharge characteristics and electrical properties are still not well known. In order to provide initial estimates on electrical properties and quantities such as particle densities, we employed a two-dimensional, time-dependent fluid model to describe the plasma needle. In this model the balance equation is solved in the drift-diffusion approach for various species and the electron energy, as well as Poisson's equation. We found that the plasma production occurs in the sheath region and results in a steady flux of reactive species outwards. Even at small (< 0.1%) admixtures of N-2 to the He background, N-2(+) is the dominant ion. The electron density is typically 10(11) cm(-3) and the dissipated power is in the order of 10 mW. These results are consistent with the experimental data available and can give direction to the practical development of the plasma needle. (c) 2005 American Institute of Physics

    Long-term renal function in children with Wilms Tumour and constitutional WT1 pathogenic variant

    Get PDF
    BACKGROUND: Wilms tumour (WT) survivors, especially patients with associated syndromes or genitourinary anomalies due to constitutional WT1 pathogenic variant, have increased risk of kidney failure. We describe the long-term kidney function in children with WT and WT1 pathogenic variant to inform the surgical strategy and oncological management of such complex children. METHODS: Retrospective analysis of patients with WT and constitutional WT1 pathogenic variant treated at a single centre between 1993 and 2016, reviewing genotype, phenotype, tumour histology, laterality, treatment, patient survival, and kidney outcome. RESULTS: We identified 25 patients (60% male, median age at diagnosis 14 months, range 4–74 months) with WT1 deletion (4), missense (2), nonsense (8), frameshift (7), or splice site (4) pathogenic variant. Thirteen (52%) had bilateral disease, 3 (12%) had WT-aniridia, 1 had incomplete Denys-Drash syndrome, 11 (44%) had genitourinary malformation, and 10 (40%) had no phenotypic anomalies. Patient survival was 100% and 3 patients were in remission after relapse at median follow-up of 9 years. Seven patients (28%) commenced chronic dialysis of which 3 were after bilateral nephrectomies. The overall kidney survival for this cohort as mean time to start of dialysis was 13.38 years (95% CI: 10.3–16.4), where 7 patients experienced kidney failure at a median of 5.6 years. All of these 7 patients were subsequently transplanted. In addition, 2 patients have stage III and stage IV chronic kidney disease and 12 patients have albuminuria and/or treatment with ACE inhibitors. Four patients (3 frameshift; 1 WT1 deletion) had normal blood pressure and kidney function without proteinuria at follow-up from 1.5 to 12 years. CONCLUSIONS: Despite the known high risk of kidney disease in patients with WT and constitutional WT1 pathogenic variant, nearly two-thirds of patients had sustained native kidney function, suggesting that nephron-sparing surgery (NSS) should be attempted when possible without compromising oncological risk. Larger international studies are needed for accurate assessment of WT1genotype-kidney function phenotype correlation

    Spectral Stacking of Radio-Interferometric Data

    Full text link
    Mapping molecular line emission beyond the bright low-J CO transitions is still challenging in extragalactic studies, even with the latest generation of (sub-)mm interferometers, such as ALMA and NOEMA. We summarise and test a spectral stacking method that has been used in the literature to recover low-intensity molecular line emission, such as HCN(1-0), HCO+(1-0), and even fainter lines in external galaxies. The goal is to study the capabilities and limitations of the stacking technique when applied to imaged interferometric observations. The core idea of spectral stacking is to align spectra of the low S/N spectral lines to a known velocity field calculated from a higher S/N line expected to share the kinematics of the fainter line, e.g., CO(1-0) or 21-cm emission. Then these aligned spectra can be coherently averaged to produce potentially high S/N spectral stacks. Here, we use imaged simulated interferometric and total power observations at different signal-to-noise levels, based on real CO observations. For the combined interferometric and total power data, we find that the spectral stacking technique is capable of recovering the integrated intensities even at low S/N levels across most of the region where the high S/N prior is detected. However, when stacking interferometer-only data for low S/N emission, the stacks can miss up to 50% of the emission from the fainter line. A key result of this analysis is that the spectral stacking method is able to recover the true mean line intensities in low S/N cubes and to accurately measure the statistical significance of the recovered lines. To facilitate the application of this technique we provide a public Python package, called PyStacker.Comment: 10 pages, 10 figures, accepted for pub in A&A, Apr 28, 202

    Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens

    Ковчег Ноя: рух матерії у Сонячній системі та на ядерних рівнях Землі

    Get PDF
    У Стародавньому світі пророку Мойсею було відкрито таємницю створення світу. Як науковий геній свого часу, Мойсей зашифрував у алегоричну форму в родоводі Адама і Потопі прикладну науку про будову ядра Землі, Сонячної системи і рухи космічної водневої і сонячної вуглецевої матерій (енергій) крізь Землю.В Древнем мире пророку Моисею была открыта тайна создания мира. Как научный гений своего времени Моисей зашифровал в форму аллегории в родословной Адама и Потопе прикладную науку о строении ядра Земли, Солнечной системы и движениях космической водородной и солнечной углеродной материи (энергии) сквозь Землю.In the Ancient history the mystery of the Creation of the world was revealed to the Prophet Moses. As a scientific genius of that époque Moses codified in allegoric way in the genealogy of Adam and The Flood the applied science on the structure of the Earth core, of the Solar System and motion of cosmic hydrogenous and solar carbonic substance (energy) through the Earth
    corecore